IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v50y2023i8p2087-2102.html
   My bibliography  Save this article

Data-driven micromobility network planning for demand and safety

Author

Listed:
  • Pietro Folco
  • Laetitia Gauvin
  • Michele Tizzoni
  • Michael Szell

Abstract

Developing safe infrastructure for micromobility like bicycles or e-scooters is an efficient pathway towards climate-friendly, sustainable, and livable cities. However, urban micromobility infrastructure is typically planned ad-hoc and at best informed by survey data. Here, we study how data of micromobility trips and crashes can shape and automatize such network planning processes. We introduce a parameter that tunes the focus between demand-based and safety-based development, and investigate systematically this tradeoff for the city of Turin. We find that a full focus on demand or safety generates different network extensions in the short term, with an optimal tradeoff in-between. In the long term, our framework improves overall network quality independent of short-term focus. Thus, we show how a data-driven process can provide urban planners with automated assistance for variable short-term scenario planning while maintaining the long-term goal of a sustainable, city-spanning micromobility network.

Suggested Citation

  • Pietro Folco & Laetitia Gauvin & Michele Tizzoni & Michael Szell, 2023. "Data-driven micromobility network planning for demand and safety," Environment and Planning B, , vol. 50(8), pages 2087-2102, October.
  • Handle: RePEc:sae:envirb:v:50:y:2023:i:8:p:2087-2102
    DOI: 10.1177/23998083221135611
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/23998083221135611
    Download Restriction: no

    File URL: https://libkey.io/10.1177/23998083221135611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Markus Schläpfer & Lei Dong & Kevin O’Keeffe & Paolo Santi & Michael Szell & Hadrien Salat & Samuel Anklesaria & Mohammad Vazifeh & Carlo Ratti & Geoffrey B. West, 2021. "The universal visitation law of human mobility," Nature, Nature, vol. 593(7860), pages 522-527, May.
    2. Laura Alessandretti & Ulf Aslak & Sune Lehmann, 2020. "The scales of human mobility," Nature, Nature, vol. 587(7834), pages 402-407, November.
    3. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    4. Gössling, Stefan & Choi, Andy & Dekker, Kaely & Metzler, Daniel, 2019. "The Social Cost of Automobility, Cycling and Walking in the European Union," Ecological Economics, Elsevier, vol. 158(C), pages 65-74.
    5. Teschke, K. & Harris, M.A. & Reynolds, C.C.O. & Winters, M. & Babul, S. & Chipman, M. & Cusimano, M.D. & Brubacher, J.R. & Hunte, G. & Friedman, S.M. & Monro, M. & Shen, H. & Vernich, L. & Cripton, P., 2012. "Route infrastructure and the risk of injuries to bicyclists: A case-crossover study," American Journal of Public Health, American Public Health Association, vol. 102(12), pages 2336-2343.
    6. Cook, Simon & Stevenson, Lorna & Aldred, Rachel & Kendall, Matt & Cohen, Tom, 2022. "More than walking and cycling: What is ‘active travel’?," Transport Policy, Elsevier, vol. 126(C), pages 151-161.
    7. Zhao, Chunli & Carstensen, Trine Agervig & Nielsen, Thomas Alexander Sick & Olafsson, Anton Stahl, 2018. "Bicycle-friendly infrastructure planning in Beijing and Copenhagen - between adapting design solutions and learning local planning cultures," Journal of Transport Geography, Elsevier, vol. 68(C), pages 149-159.
    8. Martina Fazio & Nadia Giuffrida & Michela Le Pira & Giuseppe Inturri & Matteo Ignaccolo, 2021. "Planning Suitable Transport Networks for E-Scooters to Foster Micromobility Spreading," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    9. McKenzie, Grant, 2019. "Spatiotemporal comparative analysis of scooter-share and bike-share usage patterns in Washington, D.C," Journal of Transport Geography, Elsevier, vol. 78(C), pages 19-28.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Alessandretti & Luis Guillermo Natera Orozco & Meead Saberi & Michael Szell & Federico Battiston, 2023. "Multimodal urban mobility and multilayer transport networks," Environment and Planning B, , vol. 50(8), pages 2038-2070, October.
    2. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    3. Shi, Shuyang & Wang, Lin & Wang, Xiaofan, 2022. "Uncovering the spatiotemporal motif patterns in urban mobility networks by non-negative tensor decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    4. Shah, Nitesh R. & Guo, Jing & Han, Lee D. & Cherry, Christopher R., 2023. "Why do people take e-scooter trips? Insights on temporal and spatial usage patterns of detailed trip data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    5. Draženko Glavić & Marina Milenković & Aleksandar Trifunović & Igor Jokanović & Jelica Komarica, 2023. "Influence of Dockless Shared E-Scooters on Urban Mobility: WTP and Modal Shift," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    6. Jiang, Jincheng & Xu, Zhihua & Zhang, Zhenxin & Zhang, Jie & Liu, Kang & Kong, Hui, 2023. "Revealing the fractal and self-similarity of realistic collective human mobility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    7. Ecer, Fatih & Küçükönder, Hande & Kayapınar Kaya, Sema & Faruk Görçün, Ömer, 2023. "Sustainability performance analysis of micro-mobility solutions in urban transportation with a novel IVFNN-Delphi-LOPCOW-CoCoSo framework," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    8. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    9. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    10. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    11. Cao, Zhejing & Zhang, Xiaohu & Chua, Kelman & Yu, Honghai & Zhao, Jinhua, 2021. "E-scooter sharing to serve short-distance transit trips: A Singapore case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 177-196.
    12. Lorenzo Barbieri & Roberto D’Autilia & Paola Marrone & Ilaria Montella, 2023. "Graph Representation of the 15-Minute City: A Comparison between Rome, London, and Paris," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    13. Miotti, Marco & Needell, Zachary A. & Jain, Rishee K., 2023. "The impact of urban form on daily mobility demand and energy use: Evidence from the United States," Applied Energy, Elsevier, vol. 339(C).
    14. Ziedan, Abubakr & Darling, Wesley & Brakewood, Candace & Erhardt, Greg & Watkins, Kari, 2021. "The impacts of shared e-scooters on bus ridership," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 20-34.
    15. Alexandra König & Laura Gebhardt & Kerstin Stark & Julia Schuppan, 2022. "A Multi-Perspective Assessment of the Introduction of E-Scooter Sharing in Germany," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    16. Shiqin Liu & Carl Higgs & Jonathan Arundel & Geoff Boeing & Nicholas Cerdera & David Moctezuma & Ester Cerin & Deepti Adlakha & Melanie Lowe & Billie Giles-Corti, 2021. "A Generalized Framework for Measuring Pedestrian Accessibility around the World Using Open Data," Papers 2105.08814, arXiv.org.
    17. Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Montoya, Alejandro, 2022. "The maximal covering bicycle network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 222-236.
    18. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    19. Tim De Ceunynck & Gert Jan Wijlhuizen & Aslak Fyhri & Regine Gerike & Dagmar Köhler & Alice Ciccone & Atze Dijkstra & Emmanuelle Dupont & Mario Cools, 2021. "Assessing the Willingness to Use Personal e-Transporters (PeTs): Results from a Cross-National Survey in Nine European Cities," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
    20. Liu, Jianmiao & Li, Junyi & Chen, Yong & Lian, Song & Zeng, Jiaqi & Geng, Maosi & Zheng, Sijing & Dong, Yinan & He, Yan & Huang, Pei & Zhao, Zhijian & Yan, Xiaoyu & Hu, Qinru & Wang, Lei & Yang, Di & , 2023. "Multi-scale urban passenger transportation CO2 emission calculation platform for smart mobility management," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:50:y:2023:i:8:p:2087-2102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.