IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v47y2020i6p948-963.html
   My bibliography  Save this article

An urban big data-based air quality index prediction: A case study of routes planning for outdoor activities in Beijing

Author

Listed:
  • Zhiqiang Zou

    (School of Computer Science, Nanjing University of Posts and Telecommunications, ChinaJiangsu Key Laboratory of Big Data Security and Intelligent Processing, China)

  • Tao Cai

    (School of Computer Science, Nanjing University of Posts and Telecommunications, China)

  • Kai Cao

    (Department of Geography, National University of Singapore, Singapore)

Abstract

Urban big data include various types of datasets, such as air quality data, meteorological data, and weather forecast data. Air quality index is broadly used in many countries as an indicator to measure the air pollution status. This indicator has a great impact on outdoor activities of urban residents, such as long-distance cycling, running, jogging, and walking. However, for routes planning for outdoor activities, there is still a lack of comprehensive consideration of air quality. In this paper, an air quality index prediction model (namely airQP-DNN) and its application are proposed to address the issue. This paper primarily consists of two components. The first component is to predict the future air quality index based on a deep neural network, using historical air quality datasets, current meteorological datasets, and weather forecasting datasets. The second component refers to a case study of outdoor activities routes planning in Beijing, which can help plan the routes for outdoor activities based on the airQP-DNN model, and allow users to enter the origin and destination of the route for the optimized path with the minimum accumulated air quality index. The air quality monitoring datasets of Beijing and surrounding cities from April 2014 to April 2015 (over 758,000 records) are used to verify the proposed airQP-DNN model. The experimental results explicitly demonstrate that our proposed model outperforms other commonly used methods in terms of prediction accuracy, including autoregressive integrated moving average model, gradient boosted decision tree, and long short-term memory. Based on the airQP-DNN model, the case study of outdoor activities routes planning is implemented. When the origin and destination are specified, the optimized paths with the minimum accumulated air quality index would be provided, instead of the standard static Dijkstra shortest path. In addition, a Web-GIS-based prototype has also been successfully developed to support the implementation of our proposed model in this research. The success of our study not only demonstrates the value of the proposed airQP-DNN model, but also shows the potential of our model in other possible extended applications.

Suggested Citation

  • Zhiqiang Zou & Tao Cai & Kai Cao, 2020. "An urban big data-based air quality index prediction: A case study of routes planning for outdoor activities in Beijing," Environment and Planning B, , vol. 47(6), pages 948-963, July.
  • Handle: RePEc:sae:envirb:v:47:y:2020:i:6:p:948-963
    DOI: 10.1177/2399808319862292
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/2399808319862292
    Download Restriction: no

    File URL: https://libkey.io/10.1177/2399808319862292?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Randolph W. Hall, 1986. "The Fastest Path through a Network with Random Time-Dependent Travel Times," Transportation Science, INFORMS, vol. 20(3), pages 182-188, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miller-Hooks, Elise & Mahmassani, Hani, 2003. "Path comparisons for a priori and time-adaptive decisions in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 146(1), pages 67-82, April.
    2. Nielsen, Lars Relund & Andersen, Kim Allan & Pretolani, Daniele, 2006. "Bicriterion a priori route choice in stochastic time-dependent networks," CORAL Working Papers L-2006-10, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    3. Yueyue Fan & Yu Nie, 2006. "Optimal Routing for Maximizing the Travel Time Reliability," Networks and Spatial Economics, Springer, vol. 6(3), pages 333-344, September.
    4. Pretolani, Daniele, 2000. "A directed hypergraph model for random time dependent shortest paths," European Journal of Operational Research, Elsevier, vol. 123(2), pages 315-324, June.
    5. Matthias Ruß & Gunther Gust & Dirk Neumann, 2021. "The Constrained Reliable Shortest Path Problem in Stochastic Time-Dependent Networks," Operations Research, INFORMS, vol. 69(3), pages 709-726, May.
    6. Michel Bierlaire & Frank Crittin, 2006. "Solving Noisy, Large-Scale Fixed-Point Problems and Systems of Nonlinear Equations," Transportation Science, INFORMS, vol. 40(1), pages 44-63, February.
    7. Elise D. Miller-Hooks & Hani S. Mahmassani, 2000. "Least Expected Time Paths in Stochastic, Time-Varying Transportation Networks," Transportation Science, INFORMS, vol. 34(2), pages 198-215, May.
    8. Huang, He & Gao, Song, 2012. "Optimal paths in dynamic networks with dependent random link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 579-598.
    9. Azadian, Farshid & Murat, Alper E. & Chinnam, Ratna Babu, 2012. "Dynamic routing of time-sensitive air cargo using real-time information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 355-372.
    10. Zweers, Bernard G. & van der Mei, Rob D., 2022. "Minimum costs paths in intermodal transportation networks with stochastic travel times and overbookings," European Journal of Operational Research, Elsevier, vol. 300(1), pages 178-188.
    11. He Huang & Song Gao, 2018. "Trajectory-Adaptive Routing in Dynamic Networks with Dependent Random Link Travel Times," Transportation Science, INFORMS, vol. 52(1), pages 102-117, January.
    12. Feng, Tao & Lusby, Richard M. & Zhang, Yongxiang & Peng, Qiyuan, 2024. "Integrating train service route design with passenger flow allocation for an urban rail transit line," European Journal of Operational Research, Elsevier, vol. 313(1), pages 146-170.
    13. Bell, Michael G.H. & Trozzi, Valentina & Hosseinloo, Solmaz Haji & Gentile, Guido & Fonzone, Achille, 2012. "Time-dependent Hyperstar algorithm for robust vehicle navigation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 790-800.
    14. Wen, Liang & Çatay, Bülent & Eglese, Richard, 2014. "Finding a minimum cost path between a pair of nodes in a time-varying road network with a congestion charge," European Journal of Operational Research, Elsevier, vol. 236(3), pages 915-923.
    15. Ichoua, Soumia & Gendreau, Michel & Potvin, Jean-Yves, 2003. "Vehicle dispatching with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 144(2), pages 379-396, January.
    16. Manseur, Farida & Farhi, Nadir & Nguyen Van Phu, Cyril & Haj-Salem, Habib & Lebacque, Jean-Patrick, 2020. "Robust routing, its price, and the tradeoff between routing robustness and travel time reliability in road networks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 159-171.
    17. Bo Xu & Xiaodong Ji & Zhengrong Cheng, 2025. "A Comparison of Three Real-Time Shortest Path Models in Dynamic Interval Graph," Mathematics, MDPI, vol. 13(1), pages 1-18, January.
    18. James L. Bander & Chelsea C. White, 2002. "A Heuristic Search Approach for a Nonstationary Stochastic Shortest Path Problem with Terminal Cost," Transportation Science, INFORMS, vol. 36(2), pages 218-230, May.
    19. Pramesh Kumar & Alireza Khani, 2021. "Adaptive Park-and-ride Choice on Time-dependent Stochastic Multimodal Transportation Network," Networks and Spatial Economics, Springer, vol. 21(4), pages 771-800, December.
    20. Cats, Oded & Koutsopoulos, Haris N. & Burghout, Wilco & Toledo, Tomer, 2013. "Effect of real-time transit information on dynamic path choice of passengers," Working papers in Transport Economics 2013:28, CTS - Centre for Transport Studies Stockholm (KTH and VTI).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:47:y:2020:i:6:p:948-963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.