IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v35y2008i2p296-317.html
   My bibliography  Save this article

Using the ART-MMAP Neural Network to Model and Predict Urban Growth: A Spatiotemporal Data Mining Approach

Author

Listed:
  • Weiguo Liu

    (Department of Geography and Planning, University of Toledo, Toledo, OH 43606, USA)

  • Karen C Seto

    (Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305, USA)

Abstract

Predicting patterns of urban growth will be a major challenge for policy makers and environmental scientists in the 21st century. How cities grow—their shape and size—will have enormous implications for environmental sustainability and infrastructure needs. This paper presents a spatiotemporal ART-MMAP neural method to simulate and predict urban growth. Factors that affect urban growth—that is, transportation routes, land use, and topography—were directly used as inputs to the neural network model for model calibration. The calibrated network was then applied to a study site—St Louis, Missouri—to predict future urban growth and to examine future land development scenarios. This paper also introduces an effective and straightforward method for model validation and accuracy assessment, the prediction error matrix, which has been used in the pattern recognition field for several decades. In order to assess the performance of the neural network model, an in-depth accuracy assessment was conducted in which the model results were compared against a null model, an alternative naïve model, and two random models. The neural network model consistently outperformed the naïve model and two random models, and produced similar or better results than the null model. Furthermore, we evaluated the models' performance at different spatial resolutions. The prediction accuracy increases when spatial resolution becomes coarser. One particularly interesting result is that when the results are aggregated to 1 km spatial resolution, there is 100% accuracy of urban growth predicted by the neural network model versus actual urban growth.

Suggested Citation

  • Weiguo Liu & Karen C Seto, 2008. "Using the ART-MMAP Neural Network to Model and Predict Urban Growth: A Spatiotemporal Data Mining Approach," Environment and Planning B, , vol. 35(2), pages 296-317, April.
  • Handle: RePEc:sae:envirb:v:35:y:2008:i:2:p:296-317
    DOI: 10.1068/b3312
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b3312
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b3312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Landis, John D., 1994. "The California Urban Futures Model: A New Generation of Metropolitan Simulation Models," University of California Transportation Center, Working Papers qt9pb6g3g6, University of California Transportation Center.
    2. Karen C. Seto & Robert K. Kaufmann, 2003. "Modeling the Drivers of Urban Land Use Change in the Pearl River Delta, China: Integrating Remote Sensing with Socioeconomic Data," Land Economics, University of Wisconsin Press, vol. 79(1), pages 106-121.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chau, Nancy H. & Qin, Yu & Zhang, Weiwen, 2015. "Networked Leaders in the Shadow of the Market – A Chinese Experiment in Allocating Land Conversion Rights," Working Papers 250022, Cornell University, Department of Applied Economics and Management.
    2. Lin, Huiyan & Lu, Kang Shou & Espey, Molly & Allen, Jeffery, 2005. "Modeling Urban Sprawl and Land Use Change in a Coastal Area-- A Neural Network Approach," 2005 Annual meeting, July 24-27, Providence, RI 19364, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. David Hidalgo García & Julián Arco Díaz & Adelaida Martín Martín & Emilio Gómez Cobos, 2022. "Spatiotemporal Analysis of Urban Thermal Effects Caused by Heat Waves through Remote Sensing," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    4. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    5. Ravulaparthy, Srinath & Goulias, Konstadinos G., 2011. "Forecasting with Dynamic Microsimulation: Design, Implementation, and Demonstration," University of California Transportation Center, Working Papers qt2x12q5pv, University of California Transportation Center.
    6. Tommaso Orusa & Annalisa Viani & Enrico Borgogno-Mondino, 2024. "Earth Observation Data and Geospatial Deep Learning AI to Assign Contributions to European Municipalities Sen4MUN: An Empirical Application in Aosta Valley (NW Italy)," Land, MDPI, vol. 13(1), pages 1-21, January.
    7. Jianglong Chen & Jinlong Gao & Feng Yuan, 2016. "Growth Type and Functional Trajectories: An Empirical Study of Urban Expansion in Nanjing, China," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-18, February.
    8. Michael B. Teitz, 1996. "American Planning in the 1990s: Evolution, Debate and Challenge," Urban Studies, Urban Studies Journal Limited, vol. 33(4-5), pages 649-671, May.
    9. Zimu Jia & Long Chen & Jingjia Chen & Guowei Lyu & Ding Zhou & Ying Long, 2020. "Urban modeling for streets using vector cellular automata: Framework and its application in Beijing," Environment and Planning B, , vol. 47(8), pages 1418-1439, October.
    10. Guangjin Tian & Zhifeng Yang & Yichun Xie, 2007. "Detecting Spatiotemporal Dynamic Landscape Patterns Using Remote Sensing and the Lacunarity Index: A Case Study of Haikou City, China," Environment and Planning B, , vol. 34(3), pages 556-569, June.
    11. Taiyang Zhong & Xianjin Huang & Lifang Ye & Steffanie Scott, 2014. "The Impacts on Illegal Farmland Conversion of Adopting Remote Sensing Technology for Land Inspection in China," Sustainability, MDPI, vol. 6(7), pages 1-26, July.
    12. D'Agata, Alessia & Alaimo, Leonardo Salvatore & Cudlín, Pavel & Salvati, Luca, 2023. "Easy come, easy go: Short-term land-use dynamics vis à vis regional economic downturns," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    13. Li Yin & Brian Muller, 2007. "Residential Location and the Biophysical Environment: Exurban Development Agents in a Heterogeneous Landscape," Environment and Planning B, , vol. 34(2), pages 279-295, April.
    14. Michail Fragkias & Karen C Seto, 2007. "Modeling Urban Growth in Data-Sparse Environments: A New Approach," Environment and Planning B, , vol. 34(5), pages 858-883, October.
    15. Deng, Xiangzheng & Huang, Jikun & Rozelle, Scott & Uchida, Emi, 2008. "Growth, population and industrialization, and urban land expansion of China," Journal of Urban Economics, Elsevier, vol. 63(1), pages 96-115, January.
    16. Yunfei Peng & Fangling Yang & Lingwei Zhu & Ruru Li & Chao Wu & Deng Chen, 2021. "Comparative Analysis of the Factors Influencing Land Use Change for Emerging Industry and Traditional Industry: A Case Study of Shenzhen City, China," Land, MDPI, vol. 10(6), pages 1-17, May.
    17. Shu, Cheng & Xie, Hualin & Jiang, Jinfa & Chen, Qianru, 2018. "Is Urban Land Development Driven by Economic Development or Fiscal Revenue Stimuli in China?," Land Use Policy, Elsevier, vol. 77(C), pages 107-115.
    18. Qing Shen, 2000. "New Telecommunications and Residential Location Flexibility," Environment and Planning A, , vol. 32(8), pages 1445-1463, August.
    19. Harvey J Miller, 2005. "Necessary Space—Time Conditions for Human Interaction," Environment and Planning B, , vol. 32(3), pages 381-401, June.
    20. Lei, Yayuan & Flacke, Johannes & Schwarz, Nina, 2021. "Does Urban planning affect urban growth pattern? A case study of Shenzhen, China," Land Use Policy, Elsevier, vol. 101(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:35:y:2008:i:2:p:296-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.