IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v31y2010i2p113-144.html
   My bibliography  Save this article

Valuing Plug-In Hybrid Electric Vehicles’ Battery Capacity Using a Real Options Framework

Author

Listed:
  • Derek M. Lemoine

Abstract

Plug-in hybrid electric vehicles (PHEVs) enable their drivers to choose whether to use electricity or gasoline, but this fuel flexibility benefit requires the purchase of additional battery capacity relative to most other vehicles. We value the fuel flexibility of PHEVs by representing the purchase of the battery as the purchase of a strip of call options on the price of transportation. We use a Kalman filter to obtain maximum likelihood estimates for three gasoline price models applied to a U.S. municipal market. We find that using a real options approach instead of a discounted cash flow analysis does not raise the retail price at which the battery pays for itself by more than $50/kWh (or by more than 15%). A discounted cash flow approach often provides a good approximation for PHEV value in our application, but real options approaches to valuing PHEVs’ battery capacity or role in climate policy may be crucial for other analyses.

Suggested Citation

  • Derek M. Lemoine, 2010. "Valuing Plug-In Hybrid Electric Vehicles’ Battery Capacity Using a Real Options Framework," The Energy Journal, , vol. 31(2), pages 113-144, April.
  • Handle: RePEc:sae:enejou:v:31:y:2010:i:2:p:113-144
    DOI: 10.5547/ISSN0195-6574-EJ-Vol31-No2-5
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/ISSN0195-6574-EJ-Vol31-No2-5
    Download Restriction: no

    File URL: https://libkey.io/10.5547/ISSN0195-6574-EJ-Vol31-No2-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kolos, Sergey P. & Ronn, Ehud I., 2008. "Estimating the commodity market price of risk for energy prices," Energy Economics, Elsevier, vol. 30(2), pages 621-641, March.
    2. Malcolm P. Baker & E. Scott Mayfield & John E. Parsons, 1998. "Alternative Models of Uncertain Commodity Prices for Use with Modern Asset Pricing Methods," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 115-148.
    3. A. Mazaheri, 1999. "Convenience yield, mean reverting prices, and long memory in the petroleum market," Applied Financial Economics, Taylor & Francis Journals, vol. 9(1), pages 31-50.
    4. repec:cdl:itsdav:qt56x845v4 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guedes, José & Santos, Pedro, 2016. "Valuing an offshore oil exploration and production project through real options analysis," Energy Economics, Elsevier, vol. 60(C), pages 377-386.
    2. Abadie, Luis M. & Chamorro, José M., 2008. "Valuing flexibility: The case of an Integrated Gasification Combined Cycle power plant," Energy Economics, Elsevier, vol. 30(4), pages 1850-1881, July.
    3. Chen, Shan & Insley, Margaret, 2012. "Regime switching in stochastic models of commodity prices: An application to an optimal tree harvesting problem," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 201-219.
    4. Bunn, Derek W. & Chen, Dipeng, 2013. "The forward premium in electricity futures," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 173-186.
    5. Luis M. Abadie & José M. Chamorro, 2009. "Monte Carlo valuation of natural gas investments," Review of Financial Economics, John Wiley & Sons, vol. 18(1), pages 10-22, January.
    6. Algieri, Bernardina & Leccadito, Arturo & Tunaru, Diana, 2021. "Risk premia in electricity derivatives markets," Energy Economics, Elsevier, vol. 100(C).
    7. Malcolm P. Baker & E. Scott Mayfield & John E. Parsons, 1998. "Alternative Models of Uncertain Commodity Prices for Use with Modern Asset Pricing Methods," The Energy Journal, , vol. 19(1), pages 115-148, January.
    8. Ignatieva Katja, 2014. "A nonparametric model for spot price dynamics and pricing of futures contracts in electricity markets," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(5), pages 483-505, December.
    9. Guy Dabi Gab-Leyba & Bertrand Laporte, 2015. "Oil Contracts, Progressive Taxation and Government Take in the Context of Uncertainty in Crude Oil Prices: The Case of Chad," Working Papers halshs-01217417, HAL.
    10. Gronwald, Marc, 2012. "A characterization of oil price behavior — Evidence from jump models," Energy Economics, Elsevier, vol. 34(5), pages 1310-1317.
    11. Shao, Chengwu & Bhar, Ramaprasad & Colwell, David B., 2015. "A multi-factor model with time-varying and seasonal risk premiums for the natural gas market," Energy Economics, Elsevier, vol. 50(C), pages 207-214.
    12. Celine de Quatrebarbes & Bertrand Laporte, 2015. "What do we know about the mineral resource rent sharing in Africa?," CERDI Working papers halshs-01146279, HAL.
    13. Elias, R.S. & Wahab, M.I.M. & Fang, L., 2016. "The spark spread and clean spark spread option based valuation of a power plant with multiple turbines," Energy Economics, Elsevier, vol. 59(C), pages 314-327.
    14. Olexandr Yemelyanov & Anastasiya Symak & Tetyana Petrushka & Roman Lesyk & Lilia Lesyk, 2018. "Evaluation of the Adaptability of the Ukrainian Economy to Changes in Prices for Energy Carriers and to Energy Market Risks," Energies, MDPI, vol. 11(12), pages 1-34, December.
    15. Taylor-de-Lima, Reynaldo L.N. & Gerbasi da Silva, Arthur José & Legey, Luiz F.L. & Szklo, Alexandre, 2018. "Evaluation of economic feasibility under uncertainty of a thermochemical route for ethanol production in Brazil," Energy, Elsevier, vol. 150(C), pages 363-376.
    16. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    17. Weron, Rafał & Zator, Michał, 2014. "Revisiting the relationship between spot and futures prices in the Nord Pool electricity market," Energy Economics, Elsevier, vol. 44(C), pages 178-190.
    18. Maslyuk, Svetlana & Smyth, Russell, 2008. "Unit root properties of crude oil spot and futures prices," Energy Policy, Elsevier, vol. 36(7), pages 2591-2600, July.
    19. Daskalakis, George & Markellos, Raphael N., 2009. "Are electricity risk premia affected by emission allowance prices? Evidence from the EEX, Nord Pool and Powernext," Energy Policy, Elsevier, vol. 37(7), pages 2594-2604, July.
    20. Gersema, Gerke & Wozabal, David, 2017. "An equilibrium pricing model for wind power futures," Energy Economics, Elsevier, vol. 65(C), pages 64-74.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:31:y:2010:i:2:p:113-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.