IDEAS home Printed from https://ideas.repec.org/a/sae/amerec/v49y2005i1p45-48.html
   My bibliography  Save this article

Deriving the GLS Transformation Parameter in Elementary Panel Data Models

Author

Listed:
  • Philip N. Jefferson

Abstract

The Generalized Least Squares (GLS) transformation that eliminates serial correlation in the error terms is central to a complete understanding of the relationship between the pooled OLS, random effects, and fixed effects estimators. A significant hurdle to attainment of that understanding is the calculation of the parameter that delivers the desired transformation. This paper derives this critical parameter in the benchmark case typically used to introduce these estimators using nothing more than elementary statistics (mean, variance, and covariance) and the quadratic formula.

Suggested Citation

  • Philip N. Jefferson, 2005. "Deriving the GLS Transformation Parameter in Elementary Panel Data Models," The American Economist, Sage Publications, vol. 49(1), pages 45-48, March.
  • Handle: RePEc:sae:amerec:v:49:y:2005:i:1:p:45-48
    DOI: 10.1177/056943450504900103
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/056943450504900103
    Download Restriction: no

    File URL: https://libkey.io/10.1177/056943450504900103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ruud, Paul A., 2000. "An Introduction to Classical Econometric Theory," OUP Catalogue, Oxford University Press, number 9780195111644, Decembrie.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haschka, Rouven E. & Herwartz, Helmut & Struthmann, Philipp & Tran, Viet Tuan & Walle, Yabibal M., 2022. "The joint effects of financial development and the business environment on firm growth: Evidence from Vietnam," Journal of Comparative Economics, Elsevier, vol. 50(2), pages 486-506.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John M. Abowd & Francis Kramarz & Sébastien Pérez-Duarte & Ian M. Schmutte, 2018. "Sorting Between and Within Industries: A Testable Model of Assortative Matching," Annals of Economics and Statistics, GENES, issue 129, pages 1-32.
    2. Hugo Benítez-Silva & Debra Dwyer & Wayne-Roy Gayle & Thomas Muench, 2008. "Expectations in micro data: rationality revisited," Empirical Economics, Springer, vol. 34(2), pages 381-416, March.
    3. Antonio Ciccone & Giovanni Peri, 2005. "Long-Run Substitutability Between More and Less Educated Workers: Evidence from U.S. States, 1950-1990," The Review of Economics and Statistics, MIT Press, vol. 87(4), pages 652-663, November.
    4. Gianmarco I.P. Ottaviano & Giovanni Peri, 2005. "Rethinking the Gains from Immigration: Theory and Evidence from the U.S," NBER Working Papers 11672, National Bureau of Economic Research, Inc.
    5. Benitez-Silva, Hugo & Dwyer, Debra S., 2006. "Expectation formation of older married couples and the rational expectations hypothesis," Labour Economics, Elsevier, vol. 13(2), pages 191-218, April.
    6. Doko Tchatoka, Firmin & Dufour, Jean-Marie, 2020. "Exogeneity tests, incomplete models, weak identification and non-Gaussian distributions: Invariance and finite-sample distributional theory," Journal of Econometrics, Elsevier, vol. 218(2), pages 390-418.
    7. Arai, Yoichi & Otsu, Taisuke & Xu, Mengshan, 2024. "GLS under monotone heteroskedasticity," Journal of Econometrics, Elsevier, vol. 246(1).
    8. Woutersen, Tiemen & Hausman, Jerry A., 2019. "Increasing the power of specification tests," Journal of Econometrics, Elsevier, vol. 211(1), pages 166-175.
    9. Hugo Benítez-Silva & Debra S. Dwyer, 2003. "What to Expect when you are Expecting Rationality: Testing Rational Expectations using Micro Data," Working Papers wp037, University of Michigan, Michigan Retirement Research Center.
    10. repec:tiu:tiucen:200457 is not listed on IDEAS
    11. Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2017. "Does the ARFIMA really shift?," CREATES Research Papers 2017-16, Department of Economics and Business Economics, Aarhus University.
    12. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    13. Gabriele Fiorentini & Enrique Sentana, 2021. "Specification tests for non‐Gaussian maximum likelihood estimators," Quantitative Economics, Econometric Society, vol. 12(3), pages 683-742, July.
    14. Aradillas-López, Andrés & Rosen, Adam M., 2022. "Inference in ordered response games with complete information," Journal of Econometrics, Elsevier, vol. 226(2), pages 451-476.
    15. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.
    16. Herrera Gómez, Marcos & Cid, Juan Carlos & Paz, Jorge Augusto, 2012. "Introducción a la econometría espacial: Una aplicación al estudio de la fecundidad en la Argentina usando R [Introduction to Spatial Econometrics: An application to the study of fertility in Argent," MPRA Paper 41138, University Library of Munich, Germany.
    17. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    18. Mark Agee & Scott Atkinson & Thomas Crocker, 2012. "Child maturation, time-invariant, and time-varying inputs: their interaction in the production of child human capital," Journal of Productivity Analysis, Springer, vol. 38(1), pages 29-44, August.
    19. Sotiris Karkalakos & Christos Kotsogiannis, 2007. "A spatial analysis of provincial corporate income tax responses: evidence from Canada," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 40(3), pages 782-811, August.
    20. Lin, Xu & Lee, Lung-fei, 2010. "GMM estimation of spatial autoregressive models with unknown heteroskedasticity," Journal of Econometrics, Elsevier, vol. 157(1), pages 34-52, July.
    21. Hlouskova, Jaroslava & Sögner, Leopold, 2020. "GMM estimation of affine term structure models," Econometrics and Statistics, Elsevier, vol. 13(C), pages 2-15.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:amerec:v:49:y:2005:i:1:p:45-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://journals.sagepub.com/home/aex .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.