IDEAS home Printed from https://ideas.repec.org/a/plo/ppat00/1005345.html
   My bibliography  Save this article

Live Cell Analysis and Mathematical Modeling Identify Determinants of Attenuation of Dengue Virus 2’-O-Methylation Mutant

Author

Listed:
  • Bianca Schmid
  • Melanie Rinas
  • Alessia Ruggieri
  • Eliana Gisela Acosta
  • Marie Bartenschlager
  • Antje Reuter
  • Wolfgang Fischl
  • Nathalie Harder
  • Jan-Philip Bergeest
  • Michael Flossdorf
  • Karl Rohr
  • Thomas Höfer
  • Ralf Bartenschlager

Abstract

Dengue virus (DENV) is the most common mosquito-transmitted virus infecting ~390 million people worldwide. In spite of this high medical relevance, neither a vaccine nor antiviral therapy is currently available. DENV elicits a strong interferon (IFN) response in infected cells, but at the same time actively counteracts IFN production and signaling. Although the kinetics of activation of this innate antiviral defense and the timing of viral counteraction critically determine the magnitude of infection and thus disease, quantitative and kinetic analyses are lacking and it remains poorly understood how DENV spreads in IFN-competent cell systems. To dissect the dynamics of replication versus antiviral defense at the single cell level, we generated a fully viable reporter DENV and host cells with authentic reporters for IFN-stimulated antiviral genes. We find that IFN controls DENV infection in a kinetically determined manner that at the single cell level is highly heterogeneous and stochastic. Even at high-dose, IFN does not fully protect all cells in the culture and, therefore, viral spread occurs even in the face of antiviral protection of naïve cells by IFN. By contrast, a vaccine candidate DENV mutant, which lacks 2’-O-methylation of viral RNA is profoundly attenuated in IFN-competent cells. Through mathematical modeling of time-resolved data and validation experiments we show that the primary determinant for attenuation is the accelerated kinetics of IFN production. This rapid induction triggered by mutant DENV precedes establishment of IFN-resistance in infected cells, thus causing a massive reduction of virus production rate. In contrast, accelerated protection of naïve cells by paracrine IFN action has negligible impact. In conclusion, these results show that attenuation of the 2’-O-methylation DENV mutant is primarily determined by kinetics of autocrine IFN action on infected cells.Author Summary: Dengue virus (DENV) infection is a global health problem for which no selective therapy or vaccine exists. The magnitude of infection critically depends on the induction kinetics of the interferon (IFN) response and the kinetics of viral countermeasures. Here we established a novel live cell imaging system to dissect the dynamics of this interplay. We find that IFN controls DENV infection in a kinetically determined manner. At the single cell level, the IFN response is highly heterogeneous and stochastic, likely accounting for viral spread in the presence of IFN. Mathematical modeling and validation experiments show that the kinetics of activation of the IFN response critically determines control of virus replication and spread. A vaccine candidate DENV mutant lacking 2’-O-methylation of viral RNA is profoundly attenuated in IFN-competent cells. This attenuation is primarily due to accelerated kinetics of IFN production acting on infected cells in an autocrine manner. In contrast, accelerated protection of naïve cells by paracrine IFN action has negligible impact. Thus, attenuation of the 2’-O-methylation DENV mutant is primarily determined by kinetics of autocrine IFN action on infected cells.

Suggested Citation

  • Bianca Schmid & Melanie Rinas & Alessia Ruggieri & Eliana Gisela Acosta & Marie Bartenschlager & Antje Reuter & Wolfgang Fischl & Nathalie Harder & Jan-Philip Bergeest & Michael Flossdorf & Karl Rohr , 2015. "Live Cell Analysis and Mathematical Modeling Identify Determinants of Attenuation of Dengue Virus 2’-O-Methylation Mutant," PLOS Pathogens, Public Library of Science, vol. 11(12), pages 1-36, December.
  • Handle: RePEc:plo:ppat00:1005345
    DOI: 10.1371/journal.ppat.1005345
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005345
    Download Restriction: no

    File URL: https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1005345&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.ppat.1005345?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John W. Schoggins & Sam J. Wilson & Maryline Panis & Mary Y. Murphy & Christopher T. Jones & Paul Bieniasz & Charles M. Rice, 2011. "A diverse range of gene products are effectors of the type I interferon antiviral response," Nature, Nature, vol. 472(7344), pages 481-485, April.
    2. Jinying Tan & Ruangang Pan & Lei Qiao & Xiufen Zou & Zishu Pan, 2012. "Modeling and Dynamical Analysis of Virus-Triggered Innate Immune Signaling Pathways," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-15, October.
    3. D. J. Venzon & S. H. Moolgavkar, 1988. "A Method for Computing Profile‐Likelihood‐Based Confidence Intervals," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 37(1), pages 87-94, March.
    4. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    5. Yazan M. Abbas & Andreas Pichlmair & Maria W. Górna & Giulio Superti-Furga & Bhushan Nagar, 2013. "Structural basis for viral 5′-PPP-RNA recognition by human IFIT proteins," Nature, Nature, vol. 494(7435), pages 60-64, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yun Lan & Sophie Wilhelmina Leur & Julia Ayano Fernando & Ho Him Wong & Martin Kampmann & Lewis Siu & Jingshu Zhang & Mingyuan Li & John M. Nicholls & Sumana Sanyal, 2023. "Viral subversion of selective autophagy is critical for biogenesis of virus replication organelles," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Kazi Mizanur Rahman & Yushuf Sharker & Reza Ali Rumi & Mahboob-Ul Islam Khan & Mohammad Sohel Shomik & Muhammad Waliur Rahman & Sk Masum Billah & Mahmudur Rahman & Peter Kim Streatfield & David Harley, 2020. "An Association between Rainy Days with Clinical Dengue Fever in Dhaka, Bangladesh: Findings from a Hospital Based Study," IJERPH, MDPI, vol. 17(24), pages 1-9, December.
    3. Thomas L. Schmidt & Nancy M. Endersby-Harshman & Anthony R. J. Rooyen & Michelle Katusele & Rebecca Vinit & Leanne J. Robinson & Moses Laman & Stephan Karl & Ary A. Hoffmann, 2024. "Global, asynchronous partial sweeps at multiple insecticide resistance genes in Aedes mosquitoes," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. repec:plo:pntd00:0005871 is not listed on IDEAS
    5. Beatrice T. Laudenbach & Karsten Krey & Quirin Emslander & Line Lykke Andersen & Alexander Reim & Pietro Scaturro & Sarah Mundigl & Christopher Dächert & Katrin Manske & Markus Moser & Janos Ludwig & , 2021. "NUDT2 initiates viral RNA degradation by removal of 5′-phosphates," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Joshua G X Wong & Tun Linn Thein & Yee-Sin Leo & Junxiong Pang & David C Lye, 2016. "Identifying Adult Dengue Patients at Low Risk for Clinically Significant Bleeding," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-12, February.
    7. David Murillo & Anarina Murillo & Sunmi Lee, 2019. "The Role of Vertical Transmission in the Control of Dengue Fever," IJERPH, MDPI, vol. 16(5), pages 1-17, March.
    8. Sakirul Khan & Sheikh Mohammad Fazle Akbar & Takaaki Yahiro & Mamun Al Mahtab & Kazunori Kimitsuki & Takehiro Hashimoto & Akira Nishizono, 2022. "Dengue Infections during COVID-19 Period: Reflection of Reality or Elusive Data Due to Effect of Pandemic," IJERPH, MDPI, vol. 19(17), pages 1-12, August.
    9. Shengzhang Dong & George Dimopoulos, 2023. "Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    11. Eunha Shim, 2017. "Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    12. Ndii, Meksianis Z. & Allingham, David & Hickson, R.I. & Glass, Kathryn, 2016. "The effect of Wolbachia on dengue outbreaks when dengue is repeatedly introduced," Theoretical Population Biology, Elsevier, vol. 111(C), pages 9-15.
    13. Bhalotra, Sonia & Rocha, Rudi & Facchini, Gabriel & Menezes, Aline, 2019. "Productivity effects of dengue in Brazil," ISER Working Paper Series 2019-04, Institute for Social and Economic Research.
    14. Dominik Kiemel & Ann-Sophie Helene Kroell & Solène Denolly & Uta Haselmann & Jean-François Bonfanti & Jose Ignacio Andres & Brahma Ghosh & Peggy Geluykens & Suzanne J. F. Kaptein & Lucas Wilken & Piet, 2024. "Pan-serotype dengue virus inhibitor JNJ-A07 targets NS4A-2K-NS4B interaction with NS2B/NS3 and blocks replication organelle formation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    15. Jerry A Nick & Silvia M Caceres & Jennifer E Kret & Katie R Poch & Matthew Strand & Anna V Faino & David P Nichols & Milene T Saavedra & Jennifer L Taylor-Cousar & Mark W Geraci & Ellen L Burnham & Mi, 2016. "Extremes of Interferon-Stimulated Gene Expression Associate with Worse Outcomes in the Acute Respiratory Distress Syndrome," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-19, September.
    16. Jundi Liu & Yu Deng & Qinlong Jing & Xiashi Chen & Zhicheng Du & Tianzhu Liang & Zhicong Yang & Dingmei Zhang & Yuantao Hao, 2018. "Dengue Infection Spectrum in Guangzhou: A Cross-Sectional Seroepidemiology Study among Community Residents between 2013 and 2015," IJERPH, MDPI, vol. 15(6), pages 1-11, June.
    17. Christopher Fitzpatrick & Alexander Haines & Mathieu Bangert & Andrew Farlow & Janet Hemingway & Raman Velayudhan, 2017. "An economic evaluation of vector control in the age of a dengue vaccine," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(8), pages 1-27, August.
    18. Dennis L Chao & Ira M Longini Jr & M Elizabeth Halloran, 2013. "The Effects of Vector Movement and Distribution in a Mathematical Model of Dengue Transmission," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-6, October.
    19. Hone-Jay Chu & Bo-Cheng Lin & Ming-Run Yu & Ta-Chien Chan, 2016. "Minimizing Spatial Variability of Healthcare Spatial Accessibility—The Case of a Dengue Fever Outbreak," IJERPH, MDPI, vol. 13(12), pages 1-11, December.
    20. de Lima, M.M.F. & Costa, M.O. & Silva, R. & Fulco, U.L. & Oliveira, J.I.N. & Vasconcelos, M.S. & Anselmo, D.H.A.L., 2024. "Viral proteins length distributions: A comparative analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    21. Marie-Christine Vaney & Mariano Dellarole & Stéphane Duquerroy & Iris Medits & Georgios Tsouchnikas & Alexander Rouvinski & Patrick England & Karin Stiasny & Franz X. Heinz & Félix A. Rey, 2022. "Evolution and activation mechanism of the flavivirus class II membrane-fusion machinery," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:ppat00:1005345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plospathogens (email available below). General contact details of provider: https://journals.plos.org/plospathogens .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.