IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0320563.html
   My bibliography  Save this article

Adaptive lift chiller units fault diagnosis model based on machine learning

Author

Listed:
  • Yang Guo
  • Zengrui Tian
  • Hong Wang
  • Mengyao Chen
  • Pan Chu
  • Yingjie Sheng

Abstract

The early minor faults generated by the chiller in operation are not easy to perceive, and the severity will gradually increase with time. The traditional fault diagnosis method has low accuracy and poor stability for early fault diagnosis. In this paper, a fault diagnosis model of Chiller is designed by combining least squares support vector machine (LSSVM) optimized by hybrid improved northern goshawk optimization algorithm (HINGO) and improved IAdaBoost ensemble learning algorithm. HINGO enhances the uniformity of the initial population distribution by means of refraction opposition-based learning strategy in initialization, and improves the local and global search ability of the algorithm by means of sine and cosine strategy, Lévy flight and nonlinear decreasing factor in the search stage. The HINGO-LSSVM-IAdaBoost model is trained and validated on the typical air conditioning fault samples of ASHRAE RP-1043. Compared with the traditional methods, the HINGO-LSSVM-IAdaBoost model shows obvious advantages for the early fault diagnosis of chiller units.

Suggested Citation

  • Yang Guo & Zengrui Tian & Hong Wang & Mengyao Chen & Pan Chu & Yingjie Sheng, 2025. "Adaptive lift chiller units fault diagnosis model based on machine learning," PLOS ONE, Public Library of Science, vol. 20(4), pages 1-23, April.
  • Handle: RePEc:plo:pone00:0320563
    DOI: 10.1371/journal.pone.0320563
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0320563
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0320563&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0320563?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Yang & Wang, Shengwei & Xiao, Fu, 2013. "Pattern recognition-based chillers fault detection method using Support Vector Data Description (SVDD)," Applied Energy, Elsevier, vol. 112(C), pages 1041-1048.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Xinbin & Zhu, Xu & Chen, Siliang & Jin, Xinqiao & Xiao, Fu & Du, Zhimin, 2023. "Physics-constrained cooperative learning-based reference models for smart management of chillers considering extrapolation scenarios," Applied Energy, Elsevier, vol. 349(C).
    2. Zhu, Xu & Zhang, Shuai & Jin, Xinqiao & Du, Zhimin, 2020. "Deep learning based reference model for operational risk evaluation of screw chillers for energy efficiency," Energy, Elsevier, vol. 213(C).
    3. Chen, Jianli & Zhang, Liang & Li, Yanfei & Shi, Yifu & Gao, Xinghua & Hu, Yuqing, 2022. "A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Sun, Chunhua & Zhang, Haixiang & Cao, Shanshan & Xia, Guoqiang & Zhong, Jian & Wu, Xiangdong, 2023. "A hierarchical classifying and two-step training strategy for detection and diagnosis of anormal temperature in district heating system," Applied Energy, Elsevier, vol. 349(C).
    5. Guo, Yabin & Liu, Yaxin & Wang, Yuhua & Wang, Zhanwei & Zhang, Zheng & Xue, Puning, 2024. "Advance and prospect of machine learning based fault detection and diagnosis in air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    6. Wang, Zhanwei & Wang, Zhiwei & He, Suowei & Gu, Xiaowei & Yan, Zeng Feng, 2017. "Fault detection and diagnosis of chillers using Bayesian network merged distance rejection and multi-source non-sensor information," Applied Energy, Elsevier, vol. 188(C), pages 200-214.
    7. Fan, Cheng & Wu, Qiuting & Zhao, Yang & Mo, Like, 2024. "Integrating active learning and semi-supervised learning for improved data-driven HVAC fault diagnosis performance," Applied Energy, Elsevier, vol. 356(C).
    8. Zhang, Liangwei & Lin, Jing & Karim, Ramin, 2015. "An angle-based subspace anomaly detection approach to high-dimensional data: With an application to industrial fault detection," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 482-497.
    9. Jiong Yang & Fanyong Cheng & Maxwell Duodu & Miao Li & Chao Han, 2022. "High-Precision Fault Detection for Electric Vehicle Battery System Based on Bayesian Optimization SVDD," Energies, MDPI, vol. 15(22), pages 1-20, November.
    10. Lei, Lei & Wu, Bing & Fang, Xin & Chen, Li & Wu, Hao & Liu, Wei, 2023. "A dynamic anomaly detection method of building energy consumption based on data mining technology," Energy, Elsevier, vol. 263(PA).
    11. Icksung Kim & Woohyun Kim, 2021. "Development and Validation of a Data-Driven Fault Detection and Diagnosis System for Chillers Using Machine Learning Algorithms," Energies, MDPI, vol. 14(7), pages 1-24, April.
    12. Dey, Maitreyee & Rana, Soumya Prakash & Dudley, Sandra, 2021. "Automated terminal unit performance analysis employing x-RBF neural network and associated energy optimisation – A case study based approach," Applied Energy, Elsevier, vol. 298(C).
    13. Henze, Gregor P. & Pavlak, Gregory S. & Florita, Anthony R. & Dodier, Robert H. & Hirsch, Adam I., 2015. "An energy signal tool for decision support in building energy systems," Applied Energy, Elsevier, vol. 138(C), pages 51-70.
    14. Liang, Xinbin & Liu, Zhuoxuan & Wang, Jie & Jin, Xinqiao & Du, Zhimin, 2023. "Uncertainty quantification-based robust deep learning for building energy systems considering distribution shift problem," Applied Energy, Elsevier, vol. 337(C).
    15. Chen, Qun & Wang, Yi-Fei & Xu, Yun-Chao, 2015. "A thermal resistance-based method for the optimal design of central variable water/air volume chiller systems," Applied Energy, Elsevier, vol. 139(C), pages 119-130.
    16. Liang, Xinbin & Zhu, Xu & Chen, Kang & Chen, Siliang & Jin, Xinqiao & Du, Zhimin, 2023. "Endowing data-driven models with rejection ability: Out-of-distribution detection and confidence estimation for black-box models of building energy systems," Energy, Elsevier, vol. 263(PC).
    17. Li, Tingting & Zhou, Yangze & Zhao, Yang & Zhang, Chaobo & Zhang, Xuejun, 2022. "A hierarchical object oriented Bayesian network-based fault diagnosis method for building energy systems," Applied Energy, Elsevier, vol. 306(PB).
    18. Zhang, Limao & Guo, Jing & Lin, Penghui & Tiong, Robert L.K., 2025. "Detecting energy consumption anomalies with dynamic adaptive encoder-decoder deep learning networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    19. Fan, Cheng & Xiao, Fu & Zhao, Yang & Wang, Jiayuan, 2018. "Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data," Applied Energy, Elsevier, vol. 211(C), pages 1123-1135.
    20. Wen, Shuqing & Zhang, Weirong & Sun, Yifu & Li, Zhenxi & Huang, Boju & Bian, Shouguo & Zhao, Lin & Wang, Yan, 2023. "An enhanced principal component analysis method with Savitzky–Golay filter and clustering algorithm for sensor fault detection and diagnosis," Applied Energy, Elsevier, vol. 337(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0320563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.