IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0319422.html
   My bibliography  Save this article

Various optimization algorithms for efficient placement and sizing of photovoltaic distributed generations in different networks

Author

Listed:
  • Ahmed A Zaki Diab
  • Fayza S Mahmoud
  • Hamdy M Sultan
  • Abou-Hashema M El-Sayed
  • Mohamed A Ismeil
  • Omar Makram Kamel

Abstract

Recent research has concentrated on emphasizing the significance of incorporating renewable distributed generations (RDGs), like photovoltaic (PV) and wind turbines (WTs), into the distribution system to address issues related to distributed generation (DG) allocation. The key implications of integrating RDGs include the improvement of voltage profiles and the minimization of power losses. Various optimization techniques, namely Salp Swarm Algorithm (SSA), Marine Predictor Algorithm (MPA), Grey Wolf Optimizer (GWO), Improved Grey Wolf Optimizer (IGWO), and Seagull Optimization Algorithm (SOA), have been applied to achieve optimal allocation and sizing of RDGs in radial distributed systems (RDS). The present paper is structured in two phases. In the initial phase, the Loss Sensitivity Factor (LSF) is employed to identify the most suitable nodes for integrating RDGs. In the second phase, within the selected candidate nodes from the first phase, the optimal location and capacity of RDGs are determined. Additionally, a comprehensive comparison of the proposed optimization methods is conducted to select the most effective solutions for the allocation of units of RDGs. The efficacy of the utilized techniques is validated through testing on two distinct networks, namely the IEEE 33 and 69 buses RDS in MATLAB, with attainments compared against other techniques. Moreover, a larger RDS system of 118- bus IEEE system has been considered in order to enhance its power quality indices. Moreover, a real case of study from Egypt of 15 bus has been considered and evaluated with considering the applied techniques. The results show the enhancement of the voltage profile and decreasing the power losses of the tested system with the DG systems with the superiority of the MPA and SSA algorithms.

Suggested Citation

  • Ahmed A Zaki Diab & Fayza S Mahmoud & Hamdy M Sultan & Abou-Hashema M El-Sayed & Mohamed A Ismeil & Omar Makram Kamel, 2025. "Various optimization algorithms for efficient placement and sizing of photovoltaic distributed generations in different networks," PLOS ONE, Public Library of Science, vol. 20(4), pages 1-48, April.
  • Handle: RePEc:plo:pone00:0319422
    DOI: 10.1371/journal.pone.0319422
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0319422
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0319422&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0319422?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohseni, Soheil & Brent, Alan C. & Burmester, Daniel, 2020. "A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid," Applied Energy, Elsevier, vol. 259(C).
    2. Amro M Elshurafa & Abdel Rahman Muhsen, 2019. "The Upper Limit of Distributed Solar PV Capacity in Riyadh: A GIS-Assisted Study," Sustainability, MDPI, vol. 11(16), pages 1-20, August.
    3. Jerónimo Ramos-Teodoro & Adrián Giménez-Miralles & Francisco Rodríguez & Manuel Berenguel, 2020. "A Flexible Tool for Modeling and Optimal Dispatch of Resources in Agri-Energy Hubs," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    4. José Adriano da Costa & David Alves Castelo Branco & Max Chianca Pimentel Filho & Manoel Firmino de Medeiros Júnior & Neilton Fidelis da Silva, 2019. "Optimal Sizing of Photovoltaic Generation in Radial Distribution Systems Using Lagrange Multipliers," Energies, MDPI, vol. 12(9), pages 1-19, May.
    5. Ramos-Teodoro, Jerónimo & Rodríguez, Francisco & Berenguel, Manuel & Torres, José Luis, 2018. "Heterogeneous resource management in energy hubs with self-consumption: Contributions and application example," Applied Energy, Elsevier, vol. 229(C), pages 537-550.
    6. Veerasamy, Veerapandiyan & Abdul Wahab, Noor Izzri & Ramachandran, Rajeswari & Othman, Mohammad Lutfi & Hizam, Hashim & Devendran, Vidhya Sagar & Irudayaraj, Andrew Xavier Raj & Vinayagam, Arangarajan, 2021. "Recurrent network based power flow solution for voltage stability assessment and improvement with distributed energy sources," Applied Energy, Elsevier, vol. 302(C).
    7. Heymann, Fabian & Miranda, Vladimiro & Soares, Filipe Joel & Duenas, Pablo & Perez Arriaga, Ignacio & Prata, Ricardo, 2019. "Orchestrating incentive designs to reduce adverse system-level effects of large-scale EV/PV adoption – The case of Portugal," Applied Energy, Elsevier, vol. 256(C).
    8. Habib Ur Rehman & Arif Hussain & Waseem Haider & Sayyed Ahmad Ali & Syed Ali Abbas Kazmi & Muhammad Huzaifa, 2023. "Optimal Planning of Solar Photovoltaic (PV) and Wind-Based DGs for Achieving Techno-Economic Objectives across Various Load Models," Energies, MDPI, vol. 16(5), pages 1-38, March.
    9. Pereira, Luan D.L. & Yahyaoui, Imene & Fiorotti, Rodrigo & de Menezes, Luíza S. & Fardin, Jussara F. & Rocha, Helder R.O. & Tadeo, Fernando, 2022. "Optimal allocation of distributed generation and capacitor banks using probabilistic generation models with correlations," Applied Energy, Elsevier, vol. 307(C).
    10. Yao, Haotian & Xiang, Yue & Liu, Junyong, 2022. "Exploring multiple investment strategies for non-utility-owned DGs: A decentralized risked-based approach," Applied Energy, Elsevier, vol. 326(C).
    11. Sanaullah Ahmad & Azzam ul Asar, 2021. "Reliability Enhancement of Electric Distribution Network Using Optimal Placement of Distributed Generation," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    12. Zhang, Zhengfa & da Silva, Filipe Faria & Guo, Yifei & Bak, Claus Leth & Chen, Zhe, 2021. "Double-layer stochastic model predictive voltage control in active distribution networks with high penetration of renewables," Applied Energy, Elsevier, vol. 302(C).
    13. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    14. Mehigan, L. & Deane, J.P. & Gallachóir, B.P.Ó. & Bertsch, V., 2018. "A review of the role of distributed generation (DG) in future electricity systems," Energy, Elsevier, vol. 163(C), pages 822-836.
    15. Yu, Hanxin & Chen, Shanlin & Chu, Yinghao & Li, Mengying & Ding, Yueming & Cui, Rongxi & Zhao, Xin, 2024. "Self-attention mechanism to enhance the generalizability of data-driven time-series prediction: A case study of intra-hour power forecasting of urban distributed photovoltaic systems," Applied Energy, Elsevier, vol. 374(C).
    16. Muhammad Shahroz Sultan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Dong Ryeol Shin, 2023. "Multi-Objective Optimization-Based Approach for Optimal Allocation of Distributed Generation Considering Techno-Economic and Environmental Indices," Sustainability, MDPI, vol. 15(5), pages 1-30, February.
    17. Pérez-Uresti, Salvador I. & Martín, Mariano & Jiménez-Gutiérrez, Arturo, 2019. "Estimation of renewable-based steam costs," Applied Energy, Elsevier, vol. 250(C), pages 1120-1131.
    18. Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Ricardo Alberto Hincapié-Isaza & Mauricio Granada Echeverri & Alberto-Jesus Perea-Moreno, 2021. "Optimal Location and Sizing of DGs in DC Networks Using a Hybrid Methodology Based on the PPBIL Algorithm and the VSA," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
    19. Qiu, Haifeng & Gu, Wei & Liu, Pengxiang & Sun, Qirun & Wu, Zhi & Lu, Xi, 2022. "Application of two-stage robust optimization theory in power system scheduling under uncertainties: A review and perspective," Energy, Elsevier, vol. 251(C).
    20. Mehdinejad, Mehdi & Shayanfar, Heidarali & Mohammadi-Ivatloo, Behnam, 2022. "Peer-to-peer decentralized energy trading framework for retailers and prosumers," Applied Energy, Elsevier, vol. 308(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0319422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.