Author
Listed:
- Ahmed A Zaki Diab
- Fayza S Mahmoud
- Hamdy M Sultan
- Abou-Hashema M El-Sayed
- Mohamed A Ismeil
- Omar Makram Kamel
Abstract
Recent research has concentrated on emphasizing the significance of incorporating renewable distributed generations (RDGs), like photovoltaic (PV) and wind turbines (WTs), into the distribution system to address issues related to distributed generation (DG) allocation. The key implications of integrating RDGs include the improvement of voltage profiles and the minimization of power losses. Various optimization techniques, namely Salp Swarm Algorithm (SSA), Marine Predictor Algorithm (MPA), Grey Wolf Optimizer (GWO), Improved Grey Wolf Optimizer (IGWO), and Seagull Optimization Algorithm (SOA), have been applied to achieve optimal allocation and sizing of RDGs in radial distributed systems (RDS). The present paper is structured in two phases. In the initial phase, the Loss Sensitivity Factor (LSF) is employed to identify the most suitable nodes for integrating RDGs. In the second phase, within the selected candidate nodes from the first phase, the optimal location and capacity of RDGs are determined. Additionally, a comprehensive comparison of the proposed optimization methods is conducted to select the most effective solutions for the allocation of units of RDGs. The efficacy of the utilized techniques is validated through testing on two distinct networks, namely the IEEE 33 and 69 buses RDS in MATLAB, with attainments compared against other techniques. Moreover, a larger RDS system of 118- bus IEEE system has been considered in order to enhance its power quality indices. Moreover, a real case of study from Egypt of 15 bus has been considered and evaluated with considering the applied techniques. The results show the enhancement of the voltage profile and decreasing the power losses of the tested system with the DG systems with the superiority of the MPA and SSA algorithms.
Suggested Citation
Ahmed A Zaki Diab & Fayza S Mahmoud & Hamdy M Sultan & Abou-Hashema M El-Sayed & Mohamed A Ismeil & Omar Makram Kamel, 2025.
"Various optimization algorithms for efficient placement and sizing of photovoltaic distributed generations in different networks,"
PLOS ONE, Public Library of Science, vol. 20(4), pages 1-48, April.
Handle:
RePEc:plo:pone00:0319422
DOI: 10.1371/journal.pone.0319422
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0319422. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.