IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0315348.html
   My bibliography  Save this article

Analysis of entropy on the European markets of energy and energy commodities prices

Author

Listed:
  • Daniel Papla
  • Rafał Siedlecki

Abstract

The paper analyzes the problem of entropy in the moments of transition from a normal economic situation (2015–2019) to the Pandemic period (2020–2021) and the period of Russia’s attack on Ukraine (2022–2023). The research in the article is based on the analysis of electricity, oil, coal, and gas prices in 27 countries of the European Union and Norway. The daily data cover the period from January 1, 2015, to March 30, 2023, and were analyzed using two-dimensional sets of electricity and commodity prices. The work uses the time dependent James-Stein estimator of the Shannon informational entropy.

Suggested Citation

  • Daniel Papla & Rafał Siedlecki, 2025. "Analysis of entropy on the European markets of energy and energy commodities prices," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-11, January.
  • Handle: RePEc:plo:pone00:0315348
    DOI: 10.1371/journal.pone.0315348
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315348
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0315348&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0315348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alvarez-Ramirez, Jose & Rodriguez, Eduardo & Alvarez, Jesus, 2012. "A multiscale entropy approach for market efficiency," International Review of Financial Analysis, Elsevier, vol. 21(C), pages 64-69.
    2. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    3. Asl, Mahdi Ghaemi & Canarella, Giorgio & Miller, Stephen M., 2021. "Dynamic asymmetric optimal portfolio allocation between energy stocks and energy commodities: Evidence from clean energy and oil and gas companies," Resources Policy, Elsevier, vol. 71(C).
    4. Contreras-Reyes, Javier E., 2015. "Rényi entropy and complexity measure for skew-gaussian distributions and related families," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 84-91.
    5. Lin, Boqiang & Bai, Rui, 2021. "Oil prices and economic policy uncertainty: Evidence from global, oil importers, and exporters’ perspective," Research in International Business and Finance, Elsevier, vol. 56(C).
    6. Martina, Esteban & Rodriguez, Eduardo & Escarela-Perez, Rafael & Alvarez-Ramirez, Jose, 2011. "Multiscale entropy analysis of crude oil price dynamics," Energy Economics, Elsevier, vol. 33(5), pages 936-947, September.
    7. Adrian Bejan & George Tsatsaronis, 2021. "Purpose in Thermodynamics," Energies, MDPI, vol. 14(2), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albarracín E., Eva Susana & Gamboa, Juan C. Rodríguez & Marques, Elaine C.M. & Stosic, Tatijana, 2019. "Complexity analysis of Brazilian agriculture and energy market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 933-941.
    2. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa & Stosic, Tatijana, 2016. "Correlations of multiscale entropy in the FX market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 52-61.
    3. Almeida, Dora & Ferreira, Paulo & Dionísio, Andreia & Aslam, Faheem, 2025. "Exploring the connection between geopolitical risks and energy markets," Energy Economics, Elsevier, vol. 141(C).
    4. Aurelio F. Bariviera & Luciano Zunino & M. Belen Guercio & Lisana B. Martinez & Osvaldo A. Rosso, 2015. "Efficiency and credit ratings: a permutation-information-theory analysis," Papers 1509.01839, arXiv.org.
    5. Brouty, Xavier & Garcin, Matthieu, 2024. "Fractal properties, information theory, and market efficiency," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    6. Liu, Jian & Jiang, Ting & Ye, Ze, 2021. "Information efficiency research of China's carbon markets," Finance Research Letters, Elsevier, vol. 38(C).
    7. Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.
    8. Ferreira, Paulo & Almeida, Dora & Dionísio, Andreia & Bouri, Elie & Quintino, Derick, 2022. "Energy markets – Who are the influencers?," Energy, Elsevier, vol. 239(PA).
    9. Muğaloğlu, Erhan & Kuşkaya, Sevda & Aldieri, Luigi & Alnour, Mohammed & Hoque, Mohammad Enamul & Magazzino, Cosimo & Bilgili, Faik, 2023. "Dynamic regime differences in the market behavior of primary natural resources in response to geopolitical risk and economic policy uncertainty," Resources Policy, Elsevier, vol. 87(PB).
    10. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    11. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    12. Benedikt Finnah, 2022. "Optimal bidding functions for renewable energies in sequential electricity markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 1-27, March.
    13. Kaijian He & Rui Zha & Jun Wu & Kin Keung Lai, 2016. "Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price," Sustainability, MDPI, vol. 8(4), pages 1-11, April.
    14. Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Pradhan, Biswajeet & Mai, Ngoc-Luan & Vu, Diep-Anh, 2021. "Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms," Resources Policy, Elsevier, vol. 73(C).
    15. Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018. "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 11(9), pages 1-20, September.
    16. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    17. Atul Anand & L Suganthi, 2018. "Hybrid GA-PSO Optimization of Artificial Neural Network for Forecasting Electricity Demand," Energies, MDPI, vol. 11(4), pages 1-15, March.
    18. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    19. Raviv, Eran & Bouwman, Kees E. & van Dijk, Dick, 2015. "Forecasting day-ahead electricity prices: Utilizing hourly prices," Energy Economics, Elsevier, vol. 50(C), pages 227-239.
    20. Dongxiao Niu & Yi Liang & Wei-Chiang Hong, 2017. "Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA," Energies, MDPI, vol. 10(12), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0315348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.