IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0314278.html
   My bibliography  Save this article

Enhancing air quality predictions in Chile: Integrating ARIMA and Artificial Neural Network models for Quintero and Coyhaique cities

Author

Listed:
  • Fidel Vallejo
  • Diana Yánez
  • Patricia Viñán-Guerrero
  • Luis A Díaz-Robles
  • Marcelo Oyaneder
  • Nicolás Reinoso
  • Luna Billartello
  • Andrea Espinoza-Pérez
  • Lorena Espinoza-Pérez
  • Ernesto Pino-Cortés

Abstract

In this comprehensive analysis of Chile’s air quality dynamics spanning 2016 to 2021, the utilization of data from the National Air Quality Information System (SINCA) and its network of monitoring stations was undertaken. Quintero, Puchuncaví, and Coyhaique were the focal points of this study, with the primary objective being the construction of predictive models for sulfur dioxide (SO2), fine particulate matter (PM2.5), and coarse particulate matter (PM10). A hybrid forecasting strategy was employed, integrating Autoregressive Integrated Moving Average (ARIMA) models with Artificial Neural Networks (ANN), incorporating external covariates such as wind speed and direction to enhance prediction accuracy. Vital monitoring stations, including Quintero, Ventanas, Coyhaique I, and Coyhaique II, played a pivotal role in data collection and model development. Emphasis on industrial and residential zones highlighted the significance of discerning pollutant origins and the influence of wind direction on concentration measurements. Geographical and climatic factors, notably in Coyhaique, revealed a seasonal stagnation effect due to topography and low winter temperatures, contributing to heightened pollution levels. Model performance underwent meticulous evaluation, utilizing metrics such as the Akaike Information Criterion (AIC), Ljung-Box statistical tests, and diverse statistical indicators. The hybrid ARIMA-ANN models demonstrated strong predictive capabilities, boasting an R2 exceeding 0.90. The outcomes underscored the imperative for tailored strategies in air quality management, recognizing the intricate interplay of environmental factors. Additionally, the adaptability and precision of neural network models were highlighted, showcasing the potential of advanced technologies in refining air quality forecasts. The findings reveal that geographical and climatic factors, especially in Coyhaique, contribute to elevated pollution levels due to seasonal stagnation and low winter temperatures. These results underscore the need for tailored air quality management strategies and highlight the potential of advanced modeling techniques to improve future air quality forecasts and deepen the understanding of environmental challenges in Chile.

Suggested Citation

  • Fidel Vallejo & Diana Yánez & Patricia Viñán-Guerrero & Luis A Díaz-Robles & Marcelo Oyaneder & Nicolás Reinoso & Luna Billartello & Andrea Espinoza-Pérez & Lorena Espinoza-Pérez & Ernesto Pino-Cortés, 2025. "Enhancing air quality predictions in Chile: Integrating ARIMA and Artificial Neural Network models for Quintero and Coyhaique cities," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-20, January.
  • Handle: RePEc:plo:pone00:0314278
    DOI: 10.1371/journal.pone.0314278
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314278
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0314278&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0314278?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    2. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    2. Matheus Henrique Dal Molin Ribeiro & Stéfano Frizzo Stefenon & José Donizetti de Lima & Ademir Nied & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning," Energies, MDPI, vol. 13(19), pages 1-22, October.
    3. Arthur Novaes de Amorim & Rob Deardon & Vineet Saini, 2021. "A stacked ensemble method for forecasting influenza-like illness visit volumes at emergency departments," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-15, March.
    4. Ribeiro, Matheus Henrique Dal Molin & da Silva, Ramon Gomes & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    5. Khan, Muhammad Asif & Segovia, Juan E.Trinidad & Bhatti, M.Ishaq & Kabir, Asif, 2023. "Corporate vulnerability in the US and China during COVID-19: A machine learning approach," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
    6. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    7. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    8. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    9. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    10. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    11. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    14. Li, Li & Li, Han & Panagiotelis, Anastasios, 2025. "Boosting domain-specific models with shrinkage: An application in mortality forecasting," International Journal of Forecasting, Elsevier, vol. 41(1), pages 191-207.
    15. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    16. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    17. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    18. Amita Gajewar & Gagan Bansal, 2016. "Revenue Forecasting for Enterprise Products," Papers 1701.06624, arXiv.org.
    19. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    20. Pieter van der Spek & Chris Verhoef, 2014. "Balancing Time‐to‐Market and Quality in Embedded Systems," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 166-192, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0314278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.