IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0313164.html
   My bibliography  Save this article

Research on assessment method of maximum distributed generation hosting capacity in distribution system with high shares of renewables and power electronics

Author

Listed:
  • Dai Wan
  • Kailun Fan
  • Jingyu He
  • Haochong Zhang
  • Gexing Yang
  • Xujin Duan

Abstract

With the rapid development of distributed generation (DG) within the framework of modern power systems, accurately assessing the maximum DG hosting capacity in distribution networks is crucial for ensuring the safe and stable operation of the power grid. This paper first introduces an assessment model of maximum DG hosting capacity in distribution network based on optimal power flow (OPF). Then, a two-step method that combines the linearization method and the recursive method is proposed, which consists of two parts: firstly, using linearization method to quickly calculate the preliminary assessment value of maximum DG hosting capacity, and then using a recursive method to accurately correct the preliminary assessment value. Additionally, the proposed improved comprehensive sensitivity index and safety constraint verification method can enhance the computational efficiency and accuracy of the recursive algorithm. Finally, the proposed methods were simulated and validated on the IEEE 33-bus system.

Suggested Citation

  • Dai Wan & Kailun Fan & Jingyu He & Haochong Zhang & Gexing Yang & Xujin Duan, 2024. "Research on assessment method of maximum distributed generation hosting capacity in distribution system with high shares of renewables and power electronics," PLOS ONE, Public Library of Science, vol. 19(11), pages 1-26, November.
  • Handle: RePEc:plo:pone00:0313164
    DOI: 10.1371/journal.pone.0313164
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0313164
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0313164&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0313164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Protopapadaki, Christina & Saelens, Dirk, 2017. "Heat pump and PV impact on residential low-voltage distribution grids as a function of building and district properties," Applied Energy, Elsevier, vol. 192(C), pages 268-281.
    2. Yassir Maataoui & Hamid Chekenbah & Omar Boutfarjoute & Vicenç Puig & Rafik Lasri, 2023. "A Coordinated Voltage Regulation Algorithm of a Power Distribution Grid with Multiple Photovoltaic Distributed Generators Based on Active Power Curtailment and On-Line Tap Changer," Energies, MDPI, vol. 16(14), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol & Yu, Yunhe, 2023. "Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids," Applied Energy, Elsevier, vol. 352(C).
    2. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    3. Stinner, Sebastian & Schlösser, Tim & Huchtemann, Kristian & Müller, Dirk & Monti, Antonello, 2017. "Primary energy evaluation of heat pumps considering dynamic boundary conditions in the energy system," Energy, Elsevier, vol. 138(C), pages 60-78.
    4. Fraga, Carolina & Hollmuller, Pierre & Schneider, Stefan & Lachal, Bernard, 2018. "Heat pump systems for multifamily buildings: Potential and constraints of several heat sources for diverse building demands," Applied Energy, Elsevier, vol. 225(C), pages 1033-1053.
    5. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    6. Krzysztof Tomczuk & Paweł Obstawski, 2024. "Analysis of the Cooperation of a Compressor Heat Pump with a PV System," Sustainability, MDPI, vol. 16(9), pages 1-29, April.
    7. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
    8. Jolando M. Kisse & Martin Braun & Simon Letzgus & Tanja M. Kneiske, 2020. "A GIS-Based Planning Approach for Urban Power and Natural Gas Distribution Grids with Different Heat Pump Scenarios," Energies, MDPI, vol. 13(16), pages 1-31, August.
    9. Zhang, Xingxing & Lovati, Marco & Vigna, Ilaria & Widén, Joakim & Han, Mengjie & Gal, Csilla & Feng, Tao, 2018. "A review of urban energy systems at building cluster level incorporating renewable-energy-source (RES) envelope solutions," Applied Energy, Elsevier, vol. 230(C), pages 1034-1056.
    10. Xiaozhi Gao & Jiaqi Zhang & Huiqin Sun & Yongchun Liang & Leiyuan Wei & Caihong Yan & Yicong Xie, 2024. "A Review of Voltage Control Studies on Low Voltage Distribution Networks Containing High Penetration Distributed Photovoltaics," Energies, MDPI, vol. 17(13), pages 1-24, June.
    11. Guo, Rui & Shamsi, Mohammad Haris & Sharifi, Mohsen & Saelens, Dirk, 2025. "Exploring uncertainty in district heat demand through a probabilistic building characterization approach," Applied Energy, Elsevier, vol. 377(PA).
    12. Hanmin Lim & Jongmin Jo & Kwan-Ho Chun, 2025. "Optimal On-Load Tap Changer Tap Control Method for Voltage Compliance Rate Improvement in Distribution Systems, Based on Field Measurement Data," Energies, MDPI, vol. 18(2), pages 1-16, January.
    13. Tarroja, Brian & Chiang, Felicia & AghaKouchak, Amir & Samuelsen, Scott & Raghavan, Shuba V. & Wei, Max & Sun, Kaiyu & Hong, Tianzhen, 2018. "Translating climate change and heating system electrification impacts on building energy use to future greenhouse gas emissions and electric grid capacity requirements in California," Applied Energy, Elsevier, vol. 225(C), pages 522-534.
    14. Semmelmann, Leo & Hertel, Matthias & Kircher, Kevin J. & Mikut, Ralf & Hagenmeyer, Veit & Weinhardt, Christof, 2024. "The impact of heat pumps on day-ahead energy community load forecasting," Applied Energy, Elsevier, vol. 368(C).
    15. Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol, 2025. "Grid impact of photovoltaics, electric vehicles and heat pumps on distribution grids — An overview," Applied Energy, Elsevier, vol. 380(C).
    16. Tobias Brudermueller & Ugne Potthoff & Elgar Fleisch & Felix Wortmann & Thorsten Staake, 2025. "Estimation of energy efficiency of heat pumps in residential buildings using real operation data," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    17. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    18. Liu, Xuan & Yang, Dujuan & Donkers, Alex & de Vries, Bauke, 2025. "Building sustainable urban energy systems: The role of linked data in photovoltaic generation estimation at neighbourhood level," Applied Energy, Elsevier, vol. 378(PA).
    19. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Mehmood, Fahad & Umar, Muhammad & Dominguez, Cristina & Kazmi, Hussain, 2022. "The role of residential distributed energy resources in Pakistan's energy transition," Energy Policy, Elsevier, vol. 167(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0313164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.