IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0312752.html
   My bibliography  Save this article

A hybrid approach for intrusion detection in vehicular networks using feature selection and dimensionality reduction with optimized deep learning

Author

Listed:
  • Fayaz Hassan
  • Zafi Sherhan Syed
  • Aftab Ahmed Memon
  • Saad Said Alqahtany
  • Nadeem Ahmed
  • Mana Saleh Al Reshan
  • Yousef Asiri
  • Asadullah Shaikh

Abstract

Autonomous transportation systems have the potential to greatly impact the way we travel. A vital aspect of these systems is their connectivity, facilitated by intelligent transport applications. However, the safety ensured by the vehicular network can be easily compromised by malicious traffic with the exponential growth of IoT devices. One aspect is malicious traffic identification in Vehicular networks. We proposed a hybrid approach uses automated feature engineering via correlation-based feature selection (CFS) and principal component analysis (PCA)-based dimensionality reduction to reduce feature matrix size before a series of dense layers are used for classification. The intended use of CFS and PCA in the machine learning pipeline serves two folds benefit, first is that the resultant feature matrix contains attributes that are most useful for recognizing malicious traffic, and second that after CFS and PCA, the feature matrix has a smaller dimensionality which in turn means that smaller number of weights need to be trained for the dense layers (connections are required for the dense layers) which resulting in smaller model size. Furthermore, we show the impact of post-training model weight quantization to further reduce the model size. Results demonstrate the effectiveness of feature engineering which improves the classification f1score from 96.48% to 98.43%. It also reduces the model size from 28.09 KB to 20.34 KB thus optimizing the model in terms of both classification performance and model size. Post-training quantization further optimizes the model size to 9 KB. The experimental results using CICIDS2017 dataset demonstrate that proposed hybrid model performs well not only in terms of classification performance but also yields trained models that have a low parameter count and model size. Thus, the proposed low-complexity models can be used for intrusion detection in VANET scenario.

Suggested Citation

  • Fayaz Hassan & Zafi Sherhan Syed & Aftab Ahmed Memon & Saad Said Alqahtany & Nadeem Ahmed & Mana Saleh Al Reshan & Yousef Asiri & Asadullah Shaikh, 2025. "A hybrid approach for intrusion detection in vehicular networks using feature selection and dimensionality reduction with optimized deep learning," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-18, February.
  • Handle: RePEc:plo:pone00:0312752
    DOI: 10.1371/journal.pone.0312752
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312752
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0312752&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0312752?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Neda Abdelhamid & Arun Padmavathy & David Peebles & Fadi Thabtah & Daymond Goulder-Horobin, 2020. "Data Imbalance in Autism Pre-Diagnosis Classification Systems: An Experimental Study," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Tianyi & Wang, Hua & Cai, Yutong & Liang, Maohan & Meng, Qiang, 2025. "Exploring key factors for long-term vessel incident risk prediction," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    2. Dong-Her Shih & Feng-I Chung & Ting-Wei Wu & Shuo-Yu Huang & Ming-Hung Shih, 2024. "Advanced Trans-EEGNet Deep Learning Model for Hypoxic-Ischemic Encephalopathy Severity Grading," Mathematics, MDPI, vol. 12(24), pages 1-27, December.
    3. Gulsum Alicioglu & Bo Sun & Shen Shyang Ho, 2022. "An Injury-Severity-Prediction-Driven Accident Prevention System," Sustainability, MDPI, vol. 14(11), pages 1-15, May.
    4. Chen, Shiuann-Shuoh & Choubey, Bhaskar & Singh, Vinay, 2021. "A neural network based price sensitive recommender model to predict customer choices based on price effect," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).
    5. Maria Tragouda & Michalis Doumpos & Constantin Zopounidis, 2024. "Identification of fraudulent financial statements through a multi‐label classification approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    6. Rahman, Md Jahidur & Zhu, Hongtao, 2024. "Detecting accounting fraud in family firms: Evidence from machine learning approaches," Advances in accounting, Elsevier, vol. 64(C).
    7. Sung-Mook Oh & Jin Park & Jinsun Yang & Young-Gyun Oh & Kyung-Woo Yi, 2023. "Smart classification method to detect irregular nozzle spray patterns inside carbon black reactor using ensemble transfer learning," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2729-2745, August.
    8. Lin, Fengming & Fang, Shu-Cherng & Fang, Xiaolei & Gao, Zheming & Luo, Jian, 2024. "A distributionally robust chance-constrained kernel-free quadratic surface support vector machine," European Journal of Operational Research, Elsevier, vol. 316(1), pages 46-60.
    9. Janis Ivanovs & Andreas Haberl & Raitis Melniks, 2024. "Modeling Geospatial Distribution of Peat Layer Thickness Using Machine Learning and Aerial Laser Scanning Data," Land, MDPI, vol. 13(4), pages 1-14, April.
    10. Firuz Kamalov & Linda Smail & Ikhlaas Gurrib, 2021. "Forecasting with Deep Learning: S&P 500 index," Papers 2103.14080, arXiv.org.
    11. Zhang, Sainan & Zhang, Jun & Song, Weiguo & Yang, Longnan & Zhao, Xuedan, 2024. "Hierarchical-attention-based neural network for gait emotion recognition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    12. Yang Hui & Xuesong Mei & Gedong Jiang & Fei Zhao & Ziwei Ma & Tao Tao, 2022. "Assembly quality evaluation for linear axis of machine tool using data-driven modeling approach," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 753-769, March.
    13. Xinchun Zhu & Yang Wu & Xu Zhao & Yunchen Yang & Shuangquan Liu & Luyi Shi & Yelong Wu, 2024. "Overview of Wind and Photovoltaic Data Stream Classification and Data Drift Issues," Energies, MDPI, vol. 17(17), pages 1-24, September.
    14. Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. Mubarak Alrumaidhi & Mohamed M. G. Farag & Hesham A. Rakha, 2023. "Comparative Analysis of Parametric and Non-Parametric Data-Driven Models to Predict Road Crash Severity among Elderly Drivers Using Synthetic Resampling Techniques," Sustainability, MDPI, vol. 15(13), pages 1-30, June.
    16. Juan Liu & Sha Mi, 2023. "American literature news narration based on computer web technology," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-17, October.
    17. Muhammad Asif Ali Rehmani & Saad Aslam & Shafiqur Rahman Tito & Snjezana Soltic & Pieter Nieuwoudt & Neel Pandey & Mollah Daud Ahmed, 2021. "Power Profile and Thresholding Assisted Multi-Label NILM Classification," Energies, MDPI, vol. 14(22), pages 1-18, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0312752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.