IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0292446.html
   My bibliography  Save this article

American literature news narration based on computer web technology

Author

Listed:
  • Juan Liu
  • Sha Mi

Abstract

Driven by internet technology, online has become the main way of news dissemination, but redundant information such as navigation bars and advertisements affects people’s access to news content. The research aims to enable users to obtain pure news content from redundant web information. Firstly, based on the narrative characteristics of literary news, the Term Frequency-Inverse Document Frequency (TF-IDF) algorithm is employed to extract pure news content from the analyzed web pages. The algorithm uses keyword matching, text analysis, and semantic processing to determine news content’s boundaries and key information. Secondly, the news text classification algorithm (support vector machine, K-nearest neighbor, AdaBoost algorithm) is selected through comparative experiments. The news extraction system based on keyword feature and extended Document Object Model (DOM) tree is constructed. DOM technology analyzes web page structure and extracts key elements and information. Finally, the research can get their narrative characteristics by studying the narrative sequence and structure of 15 American literary news reports. The results reveal that the most used narrative sequence in American literary news is sequence and flashback. The narrative duration is dominated by the victory rate and outline, supplemented by scenes and pauses. In addition, 53.3% of the narrative structures used in literary news are time-connected. This narrative structure can help reporters have a clear conceptual structure when writing, help readers quickly grasp and understand the context of the event and the life course of the protagonists in the report, and increase the report’s readability. This research on the narrative characteristics of American literature news can provide media practitioners with a reference on news narrative techniques and strategies.

Suggested Citation

  • Juan Liu & Sha Mi, 2023. "American literature news narration based on computer web technology," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-17, October.
  • Handle: RePEc:plo:pone00:0292446
    DOI: 10.1371/journal.pone.0292446
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292446
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0292446&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0292446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Beakcheol Jang & Inhwan Kim & Jong Wook Kim, 2019. "Word2vec convolutional neural networks for classification of news articles and tweets," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-20, August.
    2. Domenico, Giandomenico Di & Sit, Jason & Ishizaka, Alessio & Nunan, Daniel, 2021. "Fake news, social media and marketing: A systematic review," Journal of Business Research, Elsevier, vol. 124(C), pages 329-341.
    3. Neda Abdelhamid & Arun Padmavathy & David Peebles & Fadi Thabtah & Daymond Goulder-Horobin, 2020. "Data Imbalance in Autism Pre-Diagnosis Classification Systems: An Experimental Study," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xinwei & Tse, Ying Kei & Bu, Xiangzhi, 2025. "Examining corporate social irresponsibility in manufacturing: An eye-tracking study of social media news," International Journal of Production Economics, Elsevier, vol. 281(C).
    2. Zeinab Shahbazi & Yung-Cheol Byun, 2022. "NLP-Based Digital Forensic Analysis for Online Social Network Based on System Security," IJERPH, MDPI, vol. 19(12), pages 1-14, June.
    3. Xia, Huosong & Wang, Yuan & Zhang, Justin Zuopeng & Zheng, Leven J. & Kamal, Muhammad Mustafa & Arya, Varsha, 2023. "COVID-19 fake news detection: A hybrid CNN-BiLSTM-AM model," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    4. Abdullah Marish Ali & Fuad A. Ghaleb & Mohammed Sultan Mohammed & Fawaz Jaber Alsolami & Asif Irshad Khan, 2023. "Web-Informed-Augmented Fake News Detection Model Using Stacked Layers of Convolutional Neural Network and Deep Autoencoder," Mathematics, MDPI, vol. 11(9), pages 1-21, April.
    5. Jan Trzaskowski, 2022. "Data-driven value extraction and human well-being under EU law," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(2), pages 447-458, June.
    6. Neszveda, Gábor & Horváth, Zsófia, 2024. "Új szempont a magyar felsőoktatási intézmények teljesítményének mérésében - az egyetemek online láthatósága [Online visibility - A new aspect of measuring the performance of Hungarian higher educat," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 755-790.
    7. Mangiò, Federico & Di Domenico, Giandomenico, 2022. "All that glitters is not real affiliation: How to handle affiliate marketing programs in the era of falsity," Business Horizons, Elsevier, vol. 65(6), pages 765-776.
    8. Dong-Her Shih & Feng-I Chung & Ting-Wei Wu & Shuo-Yu Huang & Ming-Hung Shih, 2024. "Advanced Trans-EEGNet Deep Learning Model for Hypoxic-Ischemic Encephalopathy Severity Grading," Mathematics, MDPI, vol. 12(24), pages 1-27, December.
    9. Alfonso D. Gajardo Sánchez & Luis R. Murillo-Zamorano & Joséà ngel López-Sánchez & Carmen Bueno-Muñoz, 2023. "Gamification in Health Care Management: Systematic Review of the Literature and Research Agenda," SAGE Open, , vol. 13(4), pages 21582440231, December.
    10. Abu Bashar & Mohammad Wasiq & Brighton Nyagadza & Eugine Tafadzwa Maziriri, 2024. "Emerging trends in social media marketing: a retrospective review using data mining and bibliometric analysis," Future Business Journal, Springer, vol. 10(1), pages 1-16, December.
    11. Robert Cluley & William Green, 2024. "Market research ethics: New practices but no new ideas," AMS Review, Springer;Academy of Marketing Science, vol. 14(1), pages 68-82, June.
    12. Rahman, Md Jahidur & Zhu, Hongtao, 2024. "Detecting accounting fraud in family firms: Evidence from machine learning approaches," Advances in accounting, Elsevier, vol. 64(C).
    13. Sung-Mook Oh & Jin Park & Jinsun Yang & Young-Gyun Oh & Kyung-Woo Yi, 2023. "Smart classification method to detect irregular nozzle spray patterns inside carbon black reactor using ensemble transfer learning," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2729-2745, August.
    14. Hsin‐Hui Lin & Ching‐Feng Chen & Chih‐Lun Wu, 2023. "The effects of news authenticity and social media tie strength on consumer dissemination behavior," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(4), pages 2292-2313, June.
    15. Lin, Fengming & Fang, Shu-Cherng & Fang, Xiaolei & Gao, Zheming & Luo, Jian, 2024. "A distributionally robust chance-constrained kernel-free quadratic surface support vector machine," European Journal of Operational Research, Elsevier, vol. 316(1), pages 46-60.
    16. Lazar Laura & Pop Mihai-Ionuţ, 2021. "Impact of Celebrity Endorsement and Breaking News Effect on the Attention of Consumers," Studia Universitatis „Vasile Goldis” Arad – Economics Series, Sciendo, vol. 31(3), pages 60-74, September.
    17. Fayaz Hassan & Zafi Sherhan Syed & Aftab Ahmed Memon & Saad Said Alqahtany & Nadeem Ahmed & Mana Saleh Al Reshan & Yousef Asiri & Asadullah Shaikh, 2025. "A hybrid approach for intrusion detection in vehicular networks using feature selection and dimensionality reduction with optimized deep learning," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-18, February.
    18. Janis Ivanovs & Andreas Haberl & Raitis Melniks, 2024. "Modeling Geospatial Distribution of Peat Layer Thickness Using Machine Learning and Aerial Laser Scanning Data," Land, MDPI, vol. 13(4), pages 1-14, April.
    19. Yasheng Chen & Xian Huang & Zhuojun Wu, 2023. "From natural language to accounting entries using a natural language processing method," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(4), pages 3781-3795, December.
    20. Yannopoulou, Natalia & Chandrasapth, Koblarp & Bian, Xuemei & Jin, Boyi & Gupta, Suraksha & Liu, Martin J., 2024. "How Disinformation Affects Sales: Examining the Advertising Campaign of a Socially Responsible Brand," Journal of Business Research, Elsevier, vol. 182(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0292446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.