IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0310945.html
   My bibliography  Save this article

Analysis of current and future bioclimatic suitability for C. arabica production in Ethiopia

Author

Listed:
  • Asnake Adane

Abstract

The coffee sector in Ethiopia is the livelihood of more than 20% of the population and accounts more than 25% of the country’s foreign exchange earnings. Climate change is expected to affect the climatic suitability of coffee in Ethiopia, and this would have implications for global coffee output, the national economy, and farmers’ livelihoods in Ethiopia. The objective of this paper is to assess the current and future impacts of climate change on bioclimatic suitability to C.arbica production in Ethiopia. Based on the current distribution of coffee production areas and climate change predictions from HadGEM2 and CCSM2 models and using the Maximum Entropy (MaxEnt) bioclimatic modeling approach, future changes in climatic suitability for C. arabica were predicted. Coffee production sites in Ethiopia were geo-referenced and used as input in the MAXENT model. The findings indicated that climate change will increase the suitable growing area for coffee by about 44.2% and 30.37% under HadGEM2 and CCSM2 models, respectively, by 2080 in Ethiopia. The study also revealed a westward and northwestward shift in the climatic suitability to C. arabica production in Ethiopia. This indicates that the suitability of some areas will continue with some adaptation practice, whilst others currently suitable will be unsuitable, yet others that are unsuitable will be suitable for arabica coffee production. These findings are intended to support stakeholders in the coffee sector in developing strategies for reducing the vulnerability of coffee production to climate change. Site-specific strategies should be developed to build a more climate resilient coffee livelihood in the changing climate.

Suggested Citation

  • Asnake Adane, 2024. "Analysis of current and future bioclimatic suitability for C. arabica production in Ethiopia," PLOS ONE, Public Library of Science, vol. 19(10), pages 1-20, October.
  • Handle: RePEc:plo:pone00:0310945
    DOI: 10.1371/journal.pone.0310945
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310945
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0310945&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0310945?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fábio M. DaMatta & Eric Rahn & Peter Läderach & Raquel Ghini & José C. Ramalho, 2019. "Why could the coffee crop endure climate change and global warming to a greater extent than previously estimated?," Climatic Change, Springer, vol. 152(1), pages 167-178, January.
    2. repec:plo:pone00:0047981 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kouadio, Louis & Tixier, Philippe & Byrareddy, Vivekananda & Marcussen, Torben & Mushtaq, Shahbaz & Rapidel, Bruno & Stone, Roger, 2021. "Performance of a process-based model for predicting robusta coffee yield at the regional scale in Vietnam," Ecological Modelling, Elsevier, vol. 443(C).
    2. Tsegaye Ginbo, 2022. "Heterogeneous impacts of climate change on crop yields across altitudes in Ethiopia," Climatic Change, Springer, vol. 170(1), pages 1-21, January.
    3. Fadjry Djufry & Suci Wulandari & Renato Villano, 2022. "Climate Smart Agriculture Implementation on Coffee Smallholders in Indonesia and Strategy to Accelerate," Land, MDPI, vol. 11(7), pages 1-21, July.
    4. Tosto, Ambra & Morales, Alejandro & Rahn, Eric & Evers, Jochem B. & Zuidema, Pieter A. & Anten, Niels P.R., 2023. "Simulating cocoa production: A review of modelling approaches and gaps," Agricultural Systems, Elsevier, vol. 206(C).
    5. Thomas Sawe & Anders Nielsen & Katrine Eldegard, 2020. "Crop Pollination in Small-Scale Agriculture in Tanzania: Household Dependence, Awareness and Conservation," Sustainability, MDPI, vol. 12(6), pages 1-13, March.
    6. Venturin, Afonso Zucolotto & Guimarães, Claudinei Martins & Sousa, Elias Fernandes de & Machado Filho, José Altino & Rodrigues, Weverton Pereira & Serrazine, Ícaro de Araujo & Bressan-Smith, Ricardo &, 2020. "Using a crop water stress index based on a sap flow method to estimate water status in conilon coffee plants," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Ceballos-Sierra, Federico & Dall'Erba, Sandy, 2021. "The effect of climate variability on Colombian coffee productivity: A dynamic panel model approach," Agricultural Systems, Elsevier, vol. 190(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0310945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.