IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0310018.html
   My bibliography  Save this article

Forecasting extremely high ischemic stroke incidence using meteorological time serie

Author

Listed:
  • Lucia Babalova
  • Marian Grendar
  • Egon Kurca
  • Stefan Sivak
  • Ema Kantorova
  • Katarina Mikulova
  • Pavel Stastny
  • Pavel Fasko
  • Kristina Szaboova
  • Peter Kubatka
  • Slavomir Nosal
  • Robert Mikulik
  • Vladimir Nosal

Abstract

Motivation: The association between weather conditions and stroke incidence has been a subject of interest for several years, yet the findings from various studies remain inconsistent. Additionally, predictive modelling in this context has been infrequent. This study explores the relationship of extremely high ischaemic stroke incidence and meteorological factors within the Slovak population. Furthermore, it aims to construct forecasting models of extremely high number of strokes. Methods: Over a five-year period, a total of 52,036 cases of ischemic stroke were documented. Days exhibiting a notable surge in ischemic stroke occurrences (surpassing the 90th percentile of historical records) were identified as extreme cases. These cases were then scrutinized alongside daily meteorological parameters spanning from 2015 to 2019. To create forecasts for the occurrence of these extreme cases one day in advance, three distinct methods were employed: Logistic regression, Random Forest for Time Series, and Croston’s method. Results: For each of the analyzed stroke centers, the cross-correlations between instances of extremely high stroke numbers and meteorological factors yielded negligible results. Predictive performance achieved by forecasts generated through multivariate logistic regression and Random Forest for time series analysis, which incorporated meteorological data, was on par with that of Croston’s method. Notably, Croston’s method relies solely on the stroke time series data. All three forecasting methods exhibited limited predictive accuracy. Conclusions: The task of predicting days characterized by an exceptionally high number of strokes proved to be challenging across all three explored methods. The inclusion of meteorological parameters did not yield substantive improvements in forecasting accuracy.

Suggested Citation

  • Lucia Babalova & Marian Grendar & Egon Kurca & Stefan Sivak & Ema Kantorova & Katarina Mikulova & Pavel Stastny & Pavel Fasko & Kristina Szaboova & Peter Kubatka & Slavomir Nosal & Robert Mikulik & Vl, 2024. "Forecasting extremely high ischemic stroke incidence using meteorological time serie," PLOS ONE, Public Library of Science, vol. 19(9), pages 1-26, September.
  • Handle: RePEc:plo:pone00:0310018
    DOI: 10.1371/journal.pone.0310018
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310018
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0310018&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0310018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Armstrong, J. Scott, 2007. "Significance tests harm progress in forecasting," International Journal of Forecasting, Elsevier, vol. 23(2), pages 321-327.
    2. Rob J. Hyndman & Lydia Shenstone, 2005. "Stochastic models underlying Croston's method for intermittent demand forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 389-402.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.
    2. Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
    3. Kourentzes, Nikolaos & Athanasopoulos, George, 2021. "Elucidate structure in intermittent demand series," European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
    4. Litsiou, Konstantia & Polychronakis, Yiannis & Karami, Azhdar & Nikolopoulos, Konstantinos, 2022. "Relative performance of judgmental methods for forecasting the success of megaprojects," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1185-1196.
    5. Malcolm Wright & J. Scott Armstrong, 2008. "The Ombudsman: Verification of Citations: Fawlty Towers of Knowledge?," Interfaces, INFORMS, vol. 38(2), pages 125-139, April.
    6. Syntetos, Aris A. & Kholidasari, Inna & Naim, Mohamed M., 2016. "The effects of integrating management judgement into OUT levels: In or out of context?," European Journal of Operational Research, Elsevier, vol. 249(3), pages 853-863.
    7. Adusei Jumah & Robert M. Kunst, 2016. "Optimizing time-series forecasts for inflation and interest rates using simulation and model averaging," Applied Economics, Taylor & Francis Journals, vol. 48(45), pages 4366-4378, September.
    8. Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
    9. Jan-Erik Antipin & Farid Jimmy Boumediene & Pär Österholm, 2014. "Forecasting Inflation Using Constant Gain Least Squares," Australian Economic Papers, Wiley Blackwell, vol. 53(1-2), pages 2-15, June.
    10. Jason W. Beckstead, 2007. "A note on determining the number of cues used in judgment analysis studies: The issue of type II error," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 2, pages 317-325, October.
    11. Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
    12. Corey Ducharme & Bruno Agard & Martin Trépanier, 2024. "Improving demand forecasting for customers with missing downstream data in intermittent demand supply chains with supervised multivariate clustering," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1661-1681, August.
    13. Cheng, Gang & Yang, Yuhong, 2015. "Forecast combination with outlier protection," International Journal of Forecasting, Elsevier, vol. 31(2), pages 223-237.
    14. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    15. Helge Berger & Pär Österholm, 2011. "Does Money matter for U.S. Inflation? Evidence from Bayesian VARs," CESifo Economic Studies, CESifo Group, vol. 57(3), pages 531-550, September.
    16. Pär Österholm, 2010. "Improving Unemployment Rate Forecasts Using Survey Data," Finnish Economic Papers, Finnish Economic Association, vol. 23(1), pages 16-26, Spring.
    17. Maria Billstam & Kristina Frändén & Johan Samuelsson & Pär Österholm, 2017. "Quasi-Real-Time Data of the Economic Tendency Survey," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 13(1), pages 105-138, May.
    18. P�r Österholm, 2014. "Survey data and short-term forecasts of Swedish GDP growth," Applied Economics Letters, Taylor & Francis Journals, vol. 21(2), pages 135-139, January.
    19. Hjelm, Göran & Jönsson, Kristian, 2010. "In Search of a Method for Measuring the Output Gap of the Swedish Economy," Working Papers 115, National Institute of Economic Research.
    20. Kodila-Tedika, Oasis & Rindermann, Heiner & Christainsen, Gregory, 2014. "Cognitive capital, governance, and the wealth of nations," MPRA Paper 57563, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0310018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.