IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0309741.html
   My bibliography  Save this article

Optimizing Kernel Extreme Learning Machine based on a Enhanced Adaptive Whale Optimization Algorithm for classification task

Author

Listed:
  • ZeSheng Lin

Abstract

Data classification is an important research direction in machine learning. In order to effectively handle extensive datasets, researchers have introduced diverse classification algorithms. Notably, Kernel Extreme Learning Machine (KELM), as a fast and effective classification method, has received widespread attention. However, traditional KELM algorithms have some problems when dealing with large-scale data, such as the need to adjust hyperparameters, poor interpretability, and low classification accuracy. To address these problems, this paper proposes an Enhanced Adaptive Whale Optimization Algorithm to optimize Kernel Extreme Learning Machine (EAWOA-KELM). Various methods were used to improve WOA. As a first step, a novel adaptive perturbation technique employing T-distribution is proposed to perturb the optimal position and avoid being trapped in a local maximum. Secondly, the WOA’s position update formula was modified by incorporating inertia weight ω and enhancing convergence factor α, thus improving its capability for local search. Furthermore, inspired by the grey wolf optimization algorithm, use 3 excellent particle surround strategies instead of the original random selecting particles. Finally, a novel Levy flight was implemented to promote the diversity of whale distribution. Results from experiments confirm that the enhanced WOA algorithm outperforms the standard WOA algorithm in terms of both fitness value and convergence speed. EAWOA demonstrates superior optimization accuracy compared to WOA across 21 test functions, with a notable edge on certain functions. The application of the upgraded WOA algorithm in KELM significantly improves the accuracy and efficiency of data classification by optimizing hyperparameters. This paper selects 7 datasets for classification experiments. Compared with the KELM optimized by WOA, the EAWOA optimized KELM in this paper has a significant improvement in performance, with a 5%-6% lead on some datasets, indicating the effectiveness of EAWOA-KELM in classification tasks.

Suggested Citation

  • ZeSheng Lin, 2025. "Optimizing Kernel Extreme Learning Machine based on a Enhanced Adaptive Whale Optimization Algorithm for classification task," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-25, January.
  • Handle: RePEc:plo:pone00:0309741
    DOI: 10.1371/journal.pone.0309741
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0309741
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0309741&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0309741?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ding, Yunfei & Chen, Zijun & Zhang, Hongwei & Wang, Xin & Guo, Ying, 2022. "A short-term wind power prediction model based on CEEMD and WOA-KELM," Renewable Energy, Elsevier, vol. 189(C), pages 188-198.
    2. Ying Li & Hanyu Wang & Jiahao Fan & Yanyu Geng, 2022. "A novel Q-learning algorithm based on improved whale optimization algorithm for path planning," PLOS ONE, Public Library of Science, vol. 17(12), pages 1-30, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
    2. Wang, Chao & Lin, Hong & Yang, Ming & Fu, Xiaoling & Yuan, Yue & Wang, Zewei, 2024. "A novel chaotic time series wind power point and interval prediction method based on data denoising strategy and improved coati optimization algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    3. Meng, Anbo & Zhang, Haitao & Yin, Hao & Xian, Zikang & Chen, Shu & Zhu, Zibin & Zhang, Zheng & Rong, Jiayu & Li, Chen & Wang, Chenen & Wu, Zhenbo & Deng, Weisi & Luo, Jianqiang & Wang, Xiaolin, 2023. "A novel multi-gradient evolutionary deep learning approach for few-shot wind power prediction using time-series GAN," Energy, Elsevier, vol. 283(C).
    4. Zheng, Xidong & Bai, Feifei & Zeng, Ziyang & Jin, Tao, 2024. "A new methodology to improve wind power prediction accuracy considering power quality disturbance dimension reduction and elimination," Energy, Elsevier, vol. 287(C).
    5. Yang, Mao & Guo, Yunfeng & Fan, Fulin & Huang, Tao, 2024. "Two-stage correction prediction of wind power based on numerical weather prediction wind speed superposition correction and improved clustering," Energy, Elsevier, vol. 302(C).
    6. Liang, Yang & Zhang, Dongqin & Zhang, Jize & Hu, Gang, 2024. "A state-of-the-art analysis on decomposition method for short-term wind speed forecasting using LSTM and a novel hybrid deep learning model," Energy, Elsevier, vol. 313(C).
    7. Karijadi, Irene & Chou, Shuo-Yan & Dewabharata, Anindhita, 2023. "Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method," Renewable Energy, Elsevier, vol. 218(C).
    8. Suo, Leiming & Peng, Tian & Song, Shihao & Zhang, Chu & Wang, Yuhan & Fu, Yongyan & Nazir, Muhammad Shahzad, 2023. "Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm," Energy, Elsevier, vol. 276(C).
    9. Xiong, Jinlin & Peng, Tian & Tao, Zihan & Zhang, Chu & Song, Shihao & Nazir, Muhammad Shahzad, 2023. "A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction," Energy, Elsevier, vol. 266(C).
    10. Shi, Jian & Teh, Jiashen & Alharbi, Bader & Lai, Ching-Ming, 2024. "Load forecasting for regional integrated energy system based on two-phase decomposition and mixture prediction model," Energy, Elsevier, vol. 297(C).
    11. Cui, Xiwen & Yu, Xiaoyu & Niu, Dongxiao, 2024. "The ultra-short-term wind power point-interval forecasting model based on improved variational mode decomposition and bidirectional gated recurrent unit improved by improved sparrow search algorithm a," Energy, Elsevier, vol. 288(C).
    12. Zheng, Xidong & Bai, Feifei & Zhuang, Zhiyuan & Chen, Zixing & Jin, Tao, 2023. "A new demand response management strategy considering renewable energy prediction and filtering technology," Renewable Energy, Elsevier, vol. 211(C), pages 656-668.
    13. Sun, Xiaoying & Liu, Haizhong, 2024. "Multivariate short-term wind speed prediction based on PSO-VMD-SE-ICEEMDAN two-stage decomposition and Att-S2S," Energy, Elsevier, vol. 305(C).
    14. Bilal, Boudy & Adjallah, Kondo Hloindo & Sava, Alexandre & Yetilmezsoy, Kaan & Ouassaid, Mohammed, 2023. "Wind turbine output power prediction and optimization based on a novel adaptive neuro-fuzzy inference system with the moving window," Energy, Elsevier, vol. 263(PE).
    15. Han, Kunlun & Yang, Kai & Yin, Linfei, 2022. "Lightweight actor-critic generative adversarial networks for real-time smart generation control of microgrids," Applied Energy, Elsevier, vol. 317(C).
    16. Long, Jian & Huang, Cheng & Deng, Kai & Wan, Lei & Hu, Guihua & Zhang, Feng, 2024. "Novel hybrid data-driven modeling integrating variational modal decomposition and dual-stage self-attention model: Applied to industrial petrochemical process," Energy, Elsevier, vol. 304(C).
    17. Leal, Jairon Isaias & Pitombeira-Neto, Anselmo Ramalho & Bueno, André Valente & Costa Rocha, Paulo Alexandre & de Andrade, Carla Freitas, 2025. "Probabilistic wind speed forecasting via Bayesian DLMs and its application in green hydrogen production," Applied Energy, Elsevier, vol. 382(C).
    18. Lin, Qingcheng & Cai, Huiling & Liu, Hanwei & Li, Xuefeng & Xiao, Hui, 2024. "A novel ultra-short-term wind power prediction model jointly driven by multiple algorithm optimization and adaptive selection," Energy, Elsevier, vol. 288(C).
    19. Lu, Quan & Huang, Wenxuan & Yin, Linfei, 2025. "Decomposition prediction fractional-order active disturbance rejection control deep Q network for generation control of integrated energy systems," Applied Energy, Elsevier, vol. 377(PD).
    20. Zeng, Liling & Hu, Huanling & Song, Qingkui & Zhang, Boting & Lin, Ruibin & Zhang, Dabin, 2024. "A drift-aware dynamic ensemble model with two-stage member selection for carbon price forecasting," Energy, Elsevier, vol. 313(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0309741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.