IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0301630.html
   My bibliography  Save this article

Optimization of chaotic light output in semiconductor laser systems based on multi-objective optimization algorithm

Author

Listed:
  • Jian Kong
  • Jinsong Li
  • Peng Li

Abstract

Aiming at the weak performance of chaotic light output in semiconductor laser systems, the study designed a power control algorithm for semiconductor laser drive systems based on linear self-disturbance rejection control. Then the optimization parameters and scope were determined, and multi-objective optimization and direction preference algorithms were introduced. A chaotic optical performance optimization model based on improved multi-objective genetic algorithm was constructed using adaptive functions as evaluation indicators. These results confirmed that the larger the bandwidth of the controller, the faster the response speed of the resonant converter, but the stability was poor. When the input voltage underwent a sudden change, the current ripple coefficient of the PID algorithm was 0.55%. The linear active disturbance rejection control algorithm could ensure that the voltage and current maintained at the set values, and the output current of the algorithm was more stable when the load underwent sudden changes. The directional preference algorithm could further provide more valuable solutions on the basis of adaptive genetic algorithms. When the peak value of the autocorrelation function was equal to 0.2, the delay characteristics of chaotic light were effectively suppressed, having strong signal bandwidth and complexity. In summary, the constructed model has good application effects in optimizing chaotic optical performance and has certain positive significance for communication security.

Suggested Citation

  • Jian Kong & Jinsong Li & Peng Li, 2024. "Optimization of chaotic light output in semiconductor laser systems based on multi-objective optimization algorithm," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-23, April.
  • Handle: RePEc:plo:pone00:0301630
    DOI: 10.1371/journal.pone.0301630
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301630
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0301630&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0301630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lianhai Lin & Zhigang Wang & Liqin Tian & Junyi Wu & Wenxing Wu, 2024. "A PSO-based energy-efficient data collection optimization algorithm for UAV mission planning," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-24, January.
    2. H Abdelfattah & M Esmail & Said A kotb & Mohamed Metwally Mahmoud & Hany S Hussein & Daniel Eutyche Mbadjoun Wapet & Ahmed I Omar & Ahmed M Ewais, 2024. "Optimal controller design for reactor core power stabilization in a pressurized water reactor: Applications of gold rush algorithm," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-20, January.
    3. Qinglei Zhang & Jing Hu & Zhen Liu & Jianguo Duan, 2024. "Multi-objective optimization of dual resource integrated scheduling problem of production equipment and RGVs considering conflict-free routing," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-30, January.
    4. Mokhtara, Charafeddine & Negrou, Belkhir & Settou, Noureddine & Settou, Belkhir & Samy, Mohamed Mahmoud, 2021. "Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria," Energy, Elsevier, vol. 219(C).
    5. Hongbin Choi & Adrian Phoulady & Pouria Hoveida & Nicholas May & Sina Shahbazmohamadi & Pouya Tavousi, 2024. "Automated, real-time material detection during ultrashort pulsed laser machining using laser-induced breakdown spectroscopy, for process tuning, end-pointing, and segmentation," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-19, January.
    6. Liwei Zhang & Zhihui Liu, 2020. "Research on technology prospect risk of high-tech projects based on patent analysis," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davoudkhani, Iraj Faraji & Dejamkhooy, Abdolmajid & Nowdeh, Saber Arabi, 2023. "A novel cloud-based framework for optimal design of stand-alone hybrid renewable energy system considering uncertainty and battery aging," Applied Energy, Elsevier, vol. 344(C).
    2. Ren, Haoshan & Ma, Zhenjun & Chan, Antoni B. & Sun, Yongjun, 2023. "Optimal planning of municipal-scale distributed rooftop photovoltaic systems with maximized solar energy generation under constraints in high-density cities," Energy, Elsevier, vol. 263(PA).
    3. Morteza Nazari-Heris & Atefeh Tamaskani Esfehankalateh & Pouya Ifaei, 2023. "Hybrid Energy Systems for Buildings: A Techno-Economic-Enviro Systematic Review," Energies, MDPI, vol. 16(12), pages 1-15, June.
    4. Bohteh Loh, Boris-Edmond & Nfah, Eustace Mbaka, 2024. "Techno – economic and environmental design of a three – phase hybrid renewable energy system for UNVDA Ndop Cameroon using meta-heuristic and analytical approaches," Renewable Energy, Elsevier, vol. 237(PA).
    5. Cao, Yan & Taslimi, Melika S. & Dastjerdi, Sajad Maleki & Ahmadi, Pouria & Ashjaee, Mehdi, 2022. "Design, dynamic simulation, and optimal size selection of a hybrid solar/wind and battery-based system for off-grid energy supply," Renewable Energy, Elsevier, vol. 187(C), pages 1082-1099.
    6. Daniel Kitamura & Leonardo Willer & Bruno Dias & Tiago Soares, 2023. "Risk-Averse Stochastic Programming for Planning Hybrid Electrical Energy Systems: A Brazilian Case," Energies, MDPI, vol. 16(3), pages 1-16, February.
    7. Takele Ferede Agajie & Armand Fopah-Lele & Isaac Amoussou & Ahmed Ali & Baseem Khan & Om Prakash Mahela & Ramakrishna S. S. Nuvvula & Divine Khan Ngwashi & Emmanuel Soriano Flores & Emmanuel Tanyi, 2023. "Techno-Economic Analysis and Optimization of Hybrid Renewable Energy System with Energy Storage under Two Operational Modes," Sustainability, MDPI, vol. 15(15), pages 1-31, July.
    8. Zhao, Yi-Bo & Dong, Xiao-Jian & Shen, Jia-Ni & He, Yi-Jun, 2024. "Simultaneous sizing and scheduling optimization for PV-wind-battery hybrid systems with a modified battery lifetime model: A high-resolution analysis in China," Applied Energy, Elsevier, vol. 360(C).
    9. Ge, Yongkai & Ma, Yue & Wang, Qingrui & Yang, Qing & Xing, Lu & Ba, Shusong, 2023. "Techno-economic-environmental assessment and performance comparison of a building distributed multi-energy system under various operation strategies," Renewable Energy, Elsevier, vol. 204(C), pages 685-696.
    10. Zeljković, Čedomir & Mršić, Predrag & Erceg, Bojan & Lekić, Đorđe & Kitić, Nemanja & Matić, Petar, 2022. "Optimal sizing of photovoltaic-wind-diesel-battery power supply for mobile telephony base stations," Energy, Elsevier, vol. 242(C).
    11. Liu, Zhijian & Fan, Guangyao & Sun, Dekang & Wu, Di & Guo, Jiacheng & Zhang, Shicong & Yang, Xinyan & Lin, Xianping & Ai, Lei, 2022. "A novel distributed energy system combining hybrid energy storage and a multi-objective optimization method for nearly zero-energy communities and buildings," Energy, Elsevier, vol. 239(PE).
    12. Zhang, Guodao & Zhou, Haijun & Ge, Yisu & Magabled, Sharafzher M. & Abbas, Mohamed & Pan, Xiaotian & Ponnore, Joffin Jose & Asilza, Hamd & Liu, Jian & Yang, Yanhong, 2024. "Enhancing on-grid renewable energy systems: Optimal configuration and diverse design strategies," Renewable Energy, Elsevier, vol. 235(C).
    13. Motamedisedeh, Omid & Omrani, Sara & Karim, Azharul & Drogemuller, Robin & Walker, Geoffrey, 2025. "A comprehensive review of optimum integration of photovoltaic-based energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    14. Liu, Jiangyang & Liu, Zhongbing & Wu, Yaling & Chen, Xi & Xiao, Hui & Zhang, Ling, 2022. "Impact of climate on photovoltaic battery energy storage system optimization," Renewable Energy, Elsevier, vol. 191(C), pages 625-638.
    15. Khan, Faizan A. & Pal, Nitai & Saeed, Syed H., 2021. "Optimization and sizing of SPV/Wind hybrid renewable energy system: A techno-economic and social perspective," Energy, Elsevier, vol. 233(C).
    16. Yang, Sheng & Liu, Beilin & Li, Xiaolong & Liu, Zhiqiang & Liu, Yue & Xie, Nan & Ren, Jingzheng, 2023. "Flexibility index for a distributed energy system design optimization," Renewable Energy, Elsevier, vol. 219(P1).
    17. Jahangir Hossain & Aida. F. A. Kadir & Hussain Shareef & Rampelli Manojkumar & Nagham Saeed & Ainain. N. Hanafi, 2023. "A Grid-Connected Optimal Hybrid PV-BES System Sizing for Malaysian Commercial Buildings," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    18. Singh, Poonam & Pandit, Manjaree & Srivastava, Laxmi, 2023. "Multi-objective optimal sizing of hybrid micro-grid system using an integrated intelligent technique," Energy, Elsevier, vol. 269(C).
    19. Miloud Rezkallah & Hussein Ibrahim & Félix Dubuisson & Ambrish Chandra & Sanjeev Singh & Bhim Singh & Mohamad Issa, 2021. "Hardware Implementation of Composite Control Strategy for Wind-PV-Battery Hybrid Off-Grid Power Generation System," Clean Technol., MDPI, vol. 3(4), pages 1-23, November.
    20. Xu, Jiuping & Liu, Liying & Wang, Fengjuan, 2022. "Equilibrium strategy-based economic-reliable approach for day-ahead scheduling towards solar-wind-gas hybrid power generation system: A case study from China," Energy, Elsevier, vol. 240(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0301630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.