IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0301420.html
   My bibliography  Save this article

Prediction of cross-border spread of the COVID-19 pandemic: A predictive model for imported cases outside China

Author

Listed:
  • Ying Wang
  • Fang Yuan
  • Yueqian Song
  • Huaxiang Rao
  • Lili Xiao
  • Huilin Guo
  • Xiaolong Zhang
  • Mufan Li
  • Jiayu Wang
  • Yi zhou Ren
  • Jie Tian
  • Jianzhou Yang

Abstract

The COVID-19 pandemic has been present globally for more than three years, and cross-border transmission has played an important role in its spread. Currently, most predictions of COVID-19 spread are limited to a country (or a region), and models for cross-border transmission risk assessment remain lacking. Information on imported COVID-19 cases reported from March 2020 to June 2022 was collected from the National Health Commission of China, and COVID-19 epidemic data of the countries of origin of the imported cases were collected on data websites such as WHO and Our World in Data. It is proposed to establish a prediction model suitable for the prevention and control of overseas importation of COVID-19. Firstly, the SIR model was used to fit the epidemic infection status of the countries where the cases were exported, and most of the r2 values of the fitted curves obtained were above 0.75, which indicated that the SIR model could well fit different countries and the infection status of the region. After fitting the epidemic infection status data of overseas exporting countries, on this basis, a SIR-multiple linear regression overseas import risk prediction combination model was established, which can predict the risk of overseas case importation, and the established overseas import risk model overall P

Suggested Citation

  • Ying Wang & Fang Yuan & Yueqian Song & Huaxiang Rao & Lili Xiao & Huilin Guo & Xiaolong Zhang & Mufan Li & Jiayu Wang & Yi zhou Ren & Jie Tian & Jianzhou Yang, 2024. "Prediction of cross-border spread of the COVID-19 pandemic: A predictive model for imported cases outside China," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-21, April.
  • Handle: RePEc:plo:pone00:0301420
    DOI: 10.1371/journal.pone.0301420
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301420
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0301420&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0301420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Choujun Zhan & Chi K Tse & Yuxia Fu & Zhikang Lai & Haijun Zhang, 2020. "Modeling and prediction of the 2019 coronavirus disease spreading in China incorporating human migration data," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-17, October.
    2. Tong Chen & Ziqing Chen & Xuejun Jin, 2021. "A multiple information model incorporating limited attention and information environment," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yun Qiu & Xi Chen & Wei Shi, 2020. "Impacts of social and economic factors on the transmission of coronavirus disease 2019 (COVID-19) in China," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(4), pages 1127-1172, October.
    2. Klaus F. Zimmermann & Gokhan Karabulut & Mehmet Huseyin Bilgin & Asli Cansin Doker, 2020. "Inter‐country distancing, globalisation and the coronavirus pandemic," The World Economy, Wiley Blackwell, vol. 43(6), pages 1484-1498, June.
    3. Sui Zhang & Minghao Wang & Zhao Yang & Baolei Zhang, 2021. "A Novel Predictor for Micro-Scale COVID-19 Risk Modeling: An Empirical Study from a Spatiotemporal Perspective," IJERPH, MDPI, vol. 18(24), pages 1-16, December.
    4. Zoungrana, Tibi Didier & Yerbanga, Antoine & Ouoba, Youmanli, 2022. "Socio-economic and environmental factors in the global spread of COVID-19 outbreak," Research in Economics, Elsevier, vol. 76(4), pages 325-344.
    5. Ghosh, Mousam & Ghosh, Swarnankur & Ghosh, Suman & Panda, Goutam Kumar & Saha, Pradip Kumar, 2021. "Dynamic model of infected population due to spreading of pandemic COVID-19 considering both intra and inter zone mobilization factors with rate of detection," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Essam A. Rashed & Akimasa Hirata, 2021. "One-Year Lesson: Machine Learning Prediction of COVID-19 Positive Cases with Meteorological Data and Mobility Estimate in Japan," IJERPH, MDPI, vol. 18(11), pages 1-16, May.
    7. Kebin Deng & Zhong Ding & Xu Liu, 2023. "Clan loyalty and COVID‐19 diffusion: Evidence from China," Health Economics, John Wiley & Sons, Ltd., vol. 32(4), pages 910-938, April.
    8. Yanting Zheng & Jinyuan Huang & Qiuyue Yin, 2021. "What Are the Reasons for the Different COVID-19 Situations in Different Cities of China? A Study from the Perspective of Population Migration," IJERPH, MDPI, vol. 18(6), pages 1-16, March.
    9. Arshad, Sadia & Siddique, Imran & Nawaz, Fariha & Shaheen, Aqila & Khurshid, Hina, 2023. "Dynamics of a fractional order mathematical model for COVID-19 epidemic transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0301420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.