IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0301349.html
   My bibliography  Save this article

Short-term forecasting approach of single well production based on multi-intelligent agent hybrid model

Author

Listed:
  • Hua Yan
  • Ming Liu
  • Bin Yang
  • Yang Yang
  • Hu Ni
  • Haoyu Wang

Abstract

The short-term prediction of single well production can provide direct data support for timely guiding the optimization and adjustment of oil well production parameters and studying and judging oil well production conditions. In view of the coupling effect of complex factors on the daily output of a single well, a short-term prediction method based on a multi-agent hybrid model is proposed, and a short-term prediction process of single well output is constructed. First, CEEMDAN method is used to decompose and reconstruct the original data set, and the sliding window method is used to compose the data set with the obtained components. Features of components by decomposition are described as feature vectors based on values of fuzzy entropy and autocorrelation coefficient, through which those components are divided into two groups using cluster algorithm for prediction with two sub models. Optimized online sequential extreme learning machine and the deep learning model based on encoder-decoder structure using self-attention are developed as sub models to predict the grouped data, and the final predicted production comes from the sum of prediction values by sub models. The validity of this method for short-term production prediction of single well daily oil production is verified. The statistical value of data deviation and statistical test methods are introduced as the basis for comparative evaluation, and comparative models are used as the reference model to evaluate the prediction effect of the above multi-agent hybrid model. Results indicated that the proposed hybrid model has performed better with MAE value of 0.0935, 0.0694 and 0.0593 in three cases, respectively. By comparison, the short-term prediction method of single well production based on multi-agent hybrid model has considerably improved the statistical value of prediction deviation of selected oil well data in different periods. Through statistical test, the multi-agent hybrid model is superior to the comparative models. Therefore, the short-term prediction method of single well production based on a multi-agent hybrid model can effectively optimize oilfield production parameters and study and judge oil well production conditions.

Suggested Citation

  • Hua Yan & Ming Liu & Bin Yang & Yang Yang & Hu Ni & Haoyu Wang, 2024. "Short-term forecasting approach of single well production based on multi-intelligent agent hybrid model," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-18, April.
  • Handle: RePEc:plo:pone00:0301349
    DOI: 10.1371/journal.pone.0301349
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301349
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0301349&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0301349?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Qiang & Song, Xiaoxing & Li, Rongrong, 2018. "A novel hybridization of nonlinear grey model and linear ARIMA residual correction for forecasting U.S. shale oil production," Energy, Elsevier, vol. 165(PB), pages 1320-1331.
    2. Yang, Zhongshan & Wang, Jian, 2018. "A hybrid forecasting approach applied in wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Energy, Elsevier, vol. 160(C), pages 87-100.
    3. Coelho, Igor M. & Coelho, Vitor N. & Luz, Eduardo J. da S. & Ochi, Luiz S. & GuimarĂ£es, Frederico G. & Rios, Eyder, 2017. "A GPU deep learning metaheuristic based model for time series forecasting," Applied Energy, Elsevier, vol. 201(C), pages 412-418.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    2. Zhang, Shuai & Chen, Yong & Xiao, Jiuhong & Zhang, Wenyu & Feng, Ruijun, 2021. "Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism," Renewable Energy, Elsevier, vol. 174(C), pages 688-704.
    3. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    4. Liu, Hui & Duan, Zhu & Chen, Chao, 2020. "Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder," Applied Energy, Elsevier, vol. 280(C).
    5. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
    6. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    7. Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
    8. Talaat, M. & Farahat, M.A. & Elkholy, M.H., 2019. "Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies," Energy, Elsevier, vol. 170(C), pages 668-682.
    9. Lu, Hongfang & Ma, Xin & Huang, Kun & Azimi, Mohammadamin, 2020. "Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    10. Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
    11. Kimia Chenary & Omid Pirian Kalat & Ayyoob Sharifi, 2024. "Forecasting sustainable development goals scores by 2030 using machine learning models," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(6), pages 6520-6538, December.
    12. Bouteska, Ahmed & Hajek, Petr & Fisher, Ben & Abedin, Mohammad Zoynul, 2023. "Nonlinearity in forecasting energy commodity prices: Evidence from a focused time-delayed neural network," Research in International Business and Finance, Elsevier, vol. 64(C).
    13. Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).
    14. Peng Zhang & Xin Ma & Kun She, 2019. "A novel power-driven fractional accumulated grey model and its application in forecasting wind energy consumption of China," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-33, December.
    15. Wang, Qiang & Jiang, Feng, 2019. "Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States," Energy, Elsevier, vol. 178(C), pages 781-803.
    16. Guo, Nai-Zhi & Shi, Ke-Zhong & Li, Bo & Qi, Liang-Wen & Wu, Hong-Hui & Zhang, Zi-Liang & Xu, Jian-Zhong, 2022. "A physics-inspired neural network model for short-term wind power prediction considering wake effects," Energy, Elsevier, vol. 261(PA).
    17. Hu, Yuntong & Xiao, Fuyuan, 2022. "A novel method for forecasting time series based on directed visibility graph and improved random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    18. Li, Qingyang & Wang, Guosong & Wu, Xinrong & Gao, Zhigang & Dan, Bo, 2024. "Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN," Energy, Elsevier, vol. 299(C).
    19. Qin, Li & Liu, Shi & Kang, Yi & Yan, Song An & Inaki Schlaberg, H. & Wang, Zhan, 2019. "Wind velocity distribution reconstruction using CFD database with Tucker decomposition and sensor measurement," Energy, Elsevier, vol. 167(C), pages 1236-1250.
    20. Geng, Xiulin & Xu, Lingyu & He, Xiaoyu & Yu, Jie, 2021. "Graph optimization neural network with spatio-temporal correlation learning for multi-node offshore wind speed forecasting," Renewable Energy, Elsevier, vol. 180(C), pages 1014-1025.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0301349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.