IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0301230.html
   My bibliography  Save this article

Demonstrating the utility of Instrumented Gait Analysis in the treatment of children with cerebral palsy

Author

Listed:
  • Michael H Schwartz
  • Andrew J Ries
  • Andrew G Georgiadis
  • Hans Kainz

Abstract

Background: Instrumented gait analysis (IGA) has been around for a long time but has never been shown to be useful for improving patient outcomes. In this study we demonstrate the potential utility of IGA by showing that machine learning models are better able to estimate treatment outcomes when they include both IGA and clinical (CLI) features compared to when they include CLI features alone. Design: We carried out a retrospective analysis of data from ambulatory children diagnosed with cerebral palsy who were seen at least twice at our gait analysis center. Individuals underwent a variety of treatments (including no treatment) between sequential gait analyses. We fit Bayesian Additive Regression Tree (BART) models that estimated outcomes for mean stance foot progression to demonstrate the approach. We built two models: one using CLI features only, and one using CLI and IGA features. We then compared the models’ performance in detail. We performed similar, but less detailed, analyses for a number of other outcomes. All results were based on independent test data from a 70%/30% training/testing split. Results: The IGA model was more accurate than the CLI model for mean stance-phase foot progression outcomes (RMSEIGA = 11∘, RMSECLI = 13∘) and explained more than 1.5 × as much of the variance (R2IGA = .45, R2CLI = .28). The IGA model outperformed the CLI model for every level of treatment complexity, as measured by number of simultaneous surgeries. The IGA model also exhibited superior performance for estimating outcomes of mean stance-phase knee flexion, mean stance-phase ankle dorsiflexion, maximum swing-phase knee flexion, gait deviation index (GDI), and dimensionless speed. Interpretation: The results show that IGA has the potential to be useful in the treatment planning process for ambulatory children diagnosed with cerebral palsy. We propose that the results of machine learning outcome estimators—including estimates of uncertainty—become the primary IGA tool utilized in the clinical process, complementing the standard medical practice of conducting a through patient history and physical exam, eliciting patient goals, reviewing relevant imaging data, and so on.

Suggested Citation

  • Michael H Schwartz & Andrew J Ries & Andrew G Georgiadis & Hans Kainz, 2024. "Demonstrating the utility of Instrumented Gait Analysis in the treatment of children with cerebral palsy," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-23, April.
  • Handle: RePEc:plo:pone00:0301230
    DOI: 10.1371/journal.pone.0301230
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301230
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0301230&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0301230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kapelner, Adam & Bleich, Justin, 2016. "bartMachine: Machine Learning with Bayesian Additive Regression Trees," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i04).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Kluge & Sarah Lappöhn & Kerstin Plank, 2023. "Predictors of TFP growth in European countries," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 50(1), pages 109-140, February.
    2. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "Are precious metals a hedge against exchange-rate movements? An empirical exploration using bayesian additive regression trees," The North American Journal of Economics and Finance, Elsevier, vol. 38(C), pages 27-38.
    3. Martin Huber & David Imhof & Rieko Ishii, 2022. "Transnational machine learning with screens for flagging bid‐rigging cartels," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1074-1114, July.
    4. Silvia Coderoni & Roberto Esposti & Alessandro Varacca, 2024. "How Differently Do Farms Respond to Agri-environmental Policies? A Probabilistic Machine-Learning Approach," Land Economics, University of Wisconsin Press, vol. 100(2), pages 370-397.
    5. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
    6. Falco J. Bargagli Stoffi & Kenneth De Beckker & Joana E. Maldonado & Kristof De Witte, 2021. "Assessing Sensitivity of Machine Learning Predictions.A Novel Toolbox with an Application to Financial Literacy," Papers 2102.04382, arXiv.org.
    7. Pierdzioch, Christian & Risse, Marian & Gupta, Rangan & Nyakabawo, Wendy, 2019. "On REIT returns and (un-)expected inflation: Empirical evidence based on Bayesian additive regression trees," Finance Research Letters, Elsevier, vol. 30(C), pages 160-169.
    8. Chanmin Kim & Mauricio Tec & Corwin Zigler, 2023. "Bayesian nonparametric adjustment of confounding," Biometrics, The International Biometric Society, vol. 79(4), pages 3252-3265, December.
    9. Ganguly, Prasangsha & Mukherjee, Sayanti, 2021. "A multifaceted risk assessment approach using statistical learning to evaluate socio-environmental factors associated with regional felony and misdemeanor rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    10. Maia, Mateus & Murphy, Keefe & Parnell, Andrew C., 2024. "GP-BART: A novel Bayesian additive regression trees approach using Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    11. Kristina Blennow & Johannes Persson, 2021. "To Mitigate or Adapt? Explaining Why Citizens Responding to Climate Change Favour the Former," Land, MDPI, vol. 10(3), pages 1-13, March.
    12. Bryan Keller, 2020. "Variable Selection for Causal Effect Estimation: Nonparametric Conditional Independence Testing With Random Forests," Journal of Educational and Behavioral Statistics, , vol. 45(2), pages 119-142, April.
    13. Kristina Blennow & Erik Persson & Johannes Persson, 2021. "DeveLoP—A Rationale and Toolbox for Democratic Landscape Planning," Sustainability, MDPI, vol. 13(21), pages 1-20, November.
    14. Lihua Lei & Emmanuel J. Candès, 2021. "Conformal inference of counterfactuals and individual treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 911-938, November.
    15. Alpha Forna & Ilaria Dorigatti & Pierre Nouvellet & Christl A Donnelly, 2021. "Comparison of machine learning methods for estimating case fatality ratios: An Ebola outbreak simulation study," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-15, September.
    16. Jenny Häggström, 2018. "Data†driven confounder selection via Markov and Bayesian networks," Biometrics, The International Biometric Society, vol. 74(2), pages 389-398, June.
    17. Huaiyu Zang & Hang J. Kim & Bin Huang & Rhonda Szczesniak, 2023. "Bayesian causal inference for observational studies with missingness in covariates and outcomes," Biometrics, The International Biometric Society, vol. 79(4), pages 3624-3636, December.
    18. Benjamin Küfner & Joseph W. Sakshaug & Stefan Zins, 2022. "Analysing establishment survey non‐response using administrative data and machine learning," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 310-342, December.
    19. Ruijin Lu & Boya Zhang & Anna Birukov & Cuilin Zhang & Zhen Chen, 2024. "A Variance-Based Sensitivity Analysis Approach for Identifying Interactive Exposures," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 520-541, July.
    20. Lamprinakou, Stamatina & Barahona, Mauricio & Flaxman, Seth & Filippi, Sarah & Gandy, Axel & McCoy, Emma J., 2023. "BART-based inference for Poisson processes," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0301230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.