IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0301230.html
   My bibliography  Save this article

Demonstrating the utility of Instrumented Gait Analysis in the treatment of children with cerebral palsy

Author

Listed:
  • Michael H Schwartz
  • Andrew J Ries
  • Andrew G Georgiadis
  • Hans Kainz

Abstract

Background: Instrumented gait analysis (IGA) has been around for a long time but has never been shown to be useful for improving patient outcomes. In this study we demonstrate the potential utility of IGA by showing that machine learning models are better able to estimate treatment outcomes when they include both IGA and clinical (CLI) features compared to when they include CLI features alone. Design: We carried out a retrospective analysis of data from ambulatory children diagnosed with cerebral palsy who were seen at least twice at our gait analysis center. Individuals underwent a variety of treatments (including no treatment) between sequential gait analyses. We fit Bayesian Additive Regression Tree (BART) models that estimated outcomes for mean stance foot progression to demonstrate the approach. We built two models: one using CLI features only, and one using CLI and IGA features. We then compared the models’ performance in detail. We performed similar, but less detailed, analyses for a number of other outcomes. All results were based on independent test data from a 70%/30% training/testing split. Results: The IGA model was more accurate than the CLI model for mean stance-phase foot progression outcomes (RMSEIGA = 11∘, RMSECLI = 13∘) and explained more than 1.5 × as much of the variance (R2IGA = .45, R2CLI = .28). The IGA model outperformed the CLI model for every level of treatment complexity, as measured by number of simultaneous surgeries. The IGA model also exhibited superior performance for estimating outcomes of mean stance-phase knee flexion, mean stance-phase ankle dorsiflexion, maximum swing-phase knee flexion, gait deviation index (GDI), and dimensionless speed. Interpretation: The results show that IGA has the potential to be useful in the treatment planning process for ambulatory children diagnosed with cerebral palsy. We propose that the results of machine learning outcome estimators—including estimates of uncertainty—become the primary IGA tool utilized in the clinical process, complementing the standard medical practice of conducting a through patient history and physical exam, eliciting patient goals, reviewing relevant imaging data, and so on.

Suggested Citation

  • Michael H Schwartz & Andrew J Ries & Andrew G Georgiadis & Hans Kainz, 2024. "Demonstrating the utility of Instrumented Gait Analysis in the treatment of children with cerebral palsy," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-23, April.
  • Handle: RePEc:plo:pone00:0301230
    DOI: 10.1371/journal.pone.0301230
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301230
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0301230&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0301230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0301230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.