IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0300803.html
   My bibliography  Save this article

Demand side management using optimization strategies for efficient electric vehicle load management in modern power grids

Author

Listed:
  • Manoj Kumar V.
  • Bharatiraja Chokkalingam
  • Devakirubakaran S.

Abstract

The Electric Vehicle (EV) landscape has witnessed unprecedented growth in recent years. The integration of EVs into the grid has increased the demand for power while maintaining the grid’s balance and efficiency. Demand Side Management (DSM) plays a pivotal role in this system, ensuring that the grid can accommodate the additional load demand without compromising stability or necessitating costly infrastructure upgrades. In this work, a DSM algorithm has been developed with appropriate objective functions and necessary constraints, including the EV load, distributed generation from Solar Photo Voltaic (PV), and Battery Energy Storage Systems. The objective functions are constructed using various optimization strategies, such as the Bat Optimization Algorithm (BOA), African Vulture Optimization (AVOA), Cuckoo Search Algorithm, Chaotic Harris Hawk Optimization (CHHO), Chaotic-based Interactive Autodidact School (CIAS) algorithm, and Slime Mould Algorithm (SMA). This algorithm-based DSM method is simulated using MATLAB/Simulink in different cases and loads, such as residential and Information Technology (IT) sector loads. The results show that the peak load has been reduced from 4.5 MW to 2.6 MW, and the minimum load has been raised from 0.5 MW to 1.2 MW, successfully reducing the gap between peak and low points. Additionally, the performance of each algorithm was compared in terms of the difference between peak and valley points, computation time, and convergence rate to achieve the best fitness value.

Suggested Citation

  • Manoj Kumar V. & Bharatiraja Chokkalingam & Devakirubakaran S., 2024. "Demand side management using optimization strategies for efficient electric vehicle load management in modern power grids," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-29, March.
  • Handle: RePEc:plo:pone00:0300803
    DOI: 10.1371/journal.pone.0300803
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300803
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0300803&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0300803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Castillo, Victhalia Zapata & Boer, Harmen-Sytze de & Muñoz, Raúl Maícas & Gernaat, David E.H.J. & Benders, René & van Vuuren, Detlef, 2022. "Future global electricity demand load curves," Energy, Elsevier, vol. 258(C).
    2. Filipe Rodrigues & Carlos Cardeira & João M. F. Calado & Rui Melicio, 2023. "Short-Term Load Forecasting of Electricity Demand for the Residential Sector Based on Modelling Techniques: A Systematic Review," Energies, MDPI, vol. 16(10), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    2. Xu, Jiacheng & Liang, Yingzong & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Chen, Ying, 2023. "Towards cost-effective osmotic power harnessing: Mass exchanger network synthesis for multi-stream pressure-retarded osmosis systems," Applied Energy, Elsevier, vol. 330(PA).
    3. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics," Applied Energy, Elsevier, vol. 326(C).
    4. Atif Maqbool Khan & Artur Wyrwa, 2024. "A Survey of Quantitative Techniques in Electricity Consumption—A Global Perspective," Energies, MDPI, vol. 17(19), pages 1-38, September.
    5. Dalia Mohammed Talat Ebrahim Ali & Violeta Motuzienė & Rasa Džiugaitė-Tumėnienė, 2024. "AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings," Energies, MDPI, vol. 17(17), pages 1-35, August.
    6. Pilotti, L. & Colombari, M. & Castelli, A.F. & Binotti, M. & Giaconia, A. & Martelli, E., 2023. "Simultaneous design and operational optimization of hybrid CSP-PV plants," Applied Energy, Elsevier, vol. 331(C).
    7. Hu, Wenxuan & Scholz, Yvonne & Yeligeti, Madhura & Deng, Ying & Jochem, Patrick, 2024. "Future electricity demand for Europe: Unraveling the dynamics of the Temperature Response Function," Applied Energy, Elsevier, vol. 368(C).
    8. Abdullah-Al-Nahid, Syed & Jamal, Taskin & Aziz, Tareq & Bhuiyan, Ashraf Hossain & Khan, Tafsir Ahmed, 2023. "Additive linear modelling and genetic algorithm based electric vehicle outlook and policy formulation for decarbonizing the future transport sector of Bangladesh," Transport Policy, Elsevier, vol. 136(C), pages 21-46.
    9. Katla, Daria & Węcel, Daniel & Jurczyk, Michał & Skorek-Osikowska, Anna, 2023. "Preliminary experimental study of a methanation reactor for conversion of H2 and CO2 into synthetic natural gas (SNG)," Energy, Elsevier, vol. 263(PD).
    10. Ken Oshiro & Shinichiro Fujimori, 2024. "Limited impact of hydrogen co-firing on prolonging fossil-based power generation under low emissions scenarios," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Wang, Han & Yan, Jie & Zhang, Jiawei & Liu, Shihua & Liu, Yongqian & Han, Shuang & Qu, Tonghui, 2024. "Short-term integrated forecasting method for wind power, solar power, and system load based on variable attention mechanism and multi-task learning," Energy, Elsevier, vol. 304(C).
    12. Ghimire, Sujan & Nguyen-Huy, Thong & AL-Musaylh, Mohanad S. & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2023. "A novel approach based on integration of convolutional neural networks and echo state network for daily electricity demand prediction," Energy, Elsevier, vol. 275(C).
    13. Adinkrah, Julius & Kemausuor, Francis & Tutu Tchao, Eric & Nunoo-Mensah, Henry & Agbemenu, Andrew Selasi & Adu-Poku, Akwasi & Kponyo, Jerry John, 2025. "Artificial intelligence-based strategies for sustainable energy planning and electricity demand estimation: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    14. Prakash, Abhijith & Ashby, Rohan & Bruce, Anna & MacGill, Iain, 2023. "Quantifying reserve capabilities for designing flexible electricity markets: An Australian case study with increasing penetrations of renewables," Energy Policy, Elsevier, vol. 177(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0300803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.