IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0300185.html
   My bibliography  Save this article

Spatialtemporal evolution characteristics of ozone in China and its response to urbanization

Author

Listed:
  • Li-Min Wang
  • Zi-Yi Ran
  • Xiang-Li Wu
  • Heng-Yu Wang
  • Li-Bin Zhao

Abstract

Based on the background of urbanization in China, we used the dynamic spatial panel Durbin model to study the driving mechanism of ozone pollution empirically. We also analyzed the spatial distribution of ozone driving factors using the GTWR. The results show that: i) The average annual increase of ozone concentration in ambient air in China from 2015 to 2019 was 1.68μg/m3, and 8.39μg/m3 elevated the year 2019 compared with 2015. ii) The Moran’s I value of ozone in ambient air was 0.027 in 2015 and 0.209 in 2019, showing the spatial distribution characteristics of "east heavy and west light" and "south low and north high". iii) Per capita GDP industrial structure, population density, land expansion, and urbanization rate have significant spillover effects on ozone concentration, and the regional spillover effect is greater than the local effect. R&D intensity and education level have a significant negative impact on ozone concentration. iv) There is a decreasing trend in the inhibitory effect of educational attainment and R&D intensity on ozone concentration, and an increasing trend in the promotional effect of population urbanization rate, land expansion, and economic development on ozone concentration. Empirical results suggest a twofold policy meaning: i) to explore the causes behind the distribution of ozone from the new perspective of urbanization, and to further the atmospheric environmental protection system and ii) to eliminate the adverse impacts of ozone pollution on nature and harmonious social development.

Suggested Citation

  • Li-Min Wang & Zi-Yi Ran & Xiang-Li Wu & Heng-Yu Wang & Li-Bin Zhao, 2024. "Spatialtemporal evolution characteristics of ozone in China and its response to urbanization," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-19, May.
  • Handle: RePEc:plo:pone00:0300185
    DOI: 10.1371/journal.pone.0300185
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300185
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0300185&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0300185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Antonio Duro & Jordi Teixidó-Figueras & Emilio Padilla, 2017. "The Causal Factors of International Inequality in $$\hbox {CO}_{2}$$ CO 2 Emissions Per Capita: A Regression-Based Inequality Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 683-700, August.
    2. Xi Liu & Yugang He & Renhong Wu, 2024. "Revolutionizing Environmental Sustainability: The Role of Renewable Energy Consumption and Environmental Technologies in OECD Countries," Energies, MDPI, vol. 17(2), pages 1-21, January.
    3. Casey, Gregory & Galor, Oded, 2017. "Is faster economic growth compatible with reductions in carbon emissions? The role of diminished population growth," MPRA Paper 76164, University Library of Munich, Germany.
    4. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    5. Teixidó Figueras, Jordi & Duro Moreno, Juan Antonio, 2012. "Ecological Footprint Inequality: A methodological review and some results," Working Papers 2072/203168, Universitat Rovira i Virgili, Department of Economics.
    6. Mina Baliamoune-Lutz, 2017. "Trade and Environmental Quality in African Countries: Do Institutions Matter?," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(1), pages 155-172, January.
    7. Chukwuemeka Chinonso Emenekwe & Robert Ugochukwu Onyeneke & Chinedum Uzoma Nwajiuba & Ifeoma Quinette Anugwa & Obioma Uchenna Emenekwe, 2025. "Determinants of consumption-based and production-based carbon emissions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(5), pages 10303-10339, May.
    8. Cheng, Lu & Walshe, Nicola & Mi, Zhifu, 2025. "Reducing gender inequalities in education helps mitigate climate change," Energy Economics, Elsevier, vol. 145(C).
    9. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    10. Huang, Junbing & Wang, Yajun & Lei, Hongyan & Chen, Xiang, 2024. "A technology-driven way to carbon peak and its impact mechanism," Energy, Elsevier, vol. 297(C).
    11. Roula Inglesi-Lotz & Luis Diez del Corral Morales, 2017. "The Effect of Education on a Country’s Energy Consumption: Evidence from Developed and Developing Countries," Working Papers 201733, University of Pretoria, Department of Economics.
    12. Li, Jiachen & Jiang, Meiru & Li, Ge, 2024. "Does the new energy vehicles subsidy policy decrease the carbon emissions of the urban transport industry? Evidence from Chinese cities in Yangtze River Delta," Energy, Elsevier, vol. 298(C).
    13. Wei Zheng & Patrick Paul Walsh, 2018. "Urbanization, trade openness, and air pollution: a provincial level analysis of China," Working Papers 201818, Geary Institute, University College Dublin.
    14. Poumanyvong, Phetkeo & Kaneko, Shinji & Dhakal, Shobhakar, 2012. "Impacts of urbanization on national transport and road energy use: Evidence from low, middle and high income countries," Energy Policy, Elsevier, vol. 46(C), pages 268-277.
    15. Cheng, Zhi & Lien, Fue-Sang & Yee, Eugene & Meng, Hang, 2022. "A unified framework for aeroacoustics simulation of wind turbines," Renewable Energy, Elsevier, vol. 188(C), pages 299-319.
    16. Shujaat Abbas & Hazrat Yousaf & Shabeer Khan & Mohd Ziaur Rehman & Dmitri Blueschke, 2023. "Analysis and Projection of Transport Sector Demand for Energy and Carbon Emission: An Application of the Grey Model in Pakistan," Mathematics, MDPI, vol. 11(6), pages 1-14, March.
    17. Canepa, Alessandra, "undated". "Two Decades On: Assessing the Impact of the Copenhagen Criteria on Environmental Performance in the 2004 EU Accession Countries," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202501, University of Turin.
    18. Chulin Pan & Huayi Wang & Hongpeng Guo & Hong Pan, 2021. "How Do the Population Structure Changes of China Affect Carbon Emissions? An Empirical Study Based on Ridge Regression Analysis," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    19. Julia K Steinberger & Fridolin Krausmann & Michael Getzner & Heinz Schandl & Jim West, 2013. "Development and Dematerialization: An International Study," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-11, October.
    20. Lohwasser, Johannes & Bolognesi, Thomas & Schaffer, Axel, 2025. "Impacts of population, affluence and urbanization on local air pollution and land transformation – A regional STIRPAT analysis for German districts," Ecological Economics, Elsevier, vol. 227(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0300185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.