IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0297192.html
   My bibliography  Save this article

An automatic driving trajectory planning approach in complex traffic scenarios based on integrated driver style inference and deep reinforcement learning

Author

Listed:
  • Yuchen Liu
  • Shuzhen Diao

Abstract

As autonomous driving technology continues to advance and gradually become a reality, ensuring the safety of autonomous driving in complex traffic scenarios has become a key focus and challenge in current research. Model-free deep reinforcement learning (Deep Reinforcement Learning) methods have been widely used for addressing motion planning problems in complex traffic scenarios, as they can implicitly learn interactions between vehicles. However, current planning methods based on deep reinforcement learning exhibit limited robustness and generalization performance. They struggle to adapt to traffic conditions beyond the training scenarios and face difficulties in handling uncertainties arising from unexpected situations. Therefore, this paper addresses the challenges presented by complex traffic scenarios, such as signal-free intersections. It does so by first utilizing the historical trajectories of adjacent vehicles observed in these scenarios. Through a Variational Auto-Encoder (VAE) based on the Gated Recurrent Unit (GRU) recurrent neural network, it extracts driver style features. These driver style features are then integrated with other state parameters and used to train a motion planning strategy within an extended reinforcement learning framework. This approach ultimately yields a more robust and interpretable mid-to-mid motion planning method. Experimental results confirm that the proposed method achieves low collision rates, high efficiency, and successful task completion in complex traffic scenarios.

Suggested Citation

  • Yuchen Liu & Shuzhen Diao, 2024. "An automatic driving trajectory planning approach in complex traffic scenarios based on integrated driver style inference and deep reinforcement learning," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-26, January.
  • Handle: RePEc:plo:pone00:0297192
    DOI: 10.1371/journal.pone.0297192
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297192
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0297192&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0297192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rico Lee-Ting Cho & John S. Liu & Mei Hsiu-Ching Ho, 2021. "The development of autonomous driving technology: perspectives from patent citation analysis," Transport Reviews, Taylor & Francis Journals, vol. 41(5), pages 685-711, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonin Bergeaud & Cyril Verluise, 2022. "The rise of China's technological power: the perspective from frontier technologies," CEP Discussion Papers dp1876, Centre for Economic Performance, LSE.
    2. Md Altab Hossin & Songtao Yin & Ruibo Dan & Lie Chen, 2025. "Integrating artificial intelligence in unmanned vehicles: navigating uncertainties, risks, and the path forward for the fourth industrial revolution," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-15, December.
    3. Liao, Shu-Chun & Chou, Tzu-Chuan & Huang, Chen-Hao, 2022. "Revisiting the development trajectory of the digital divide: A main path analysis approach," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    4. Bhatt, Priyanka C. & Lai, Kuei-Kuei & Drave, Vinayak A. & Lu, Tzu-Chuen & Kumar, Vimal, 2023. "Patent analysis based technology innovation assessment with the lens of disruptive innovation theory: A case of blockchain technological trajectories," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    5. Gu, Jianqiang & Wu, Zhan & Song, Yubing & Nicolescu, Ana-Cristina, 2024. "A win-win relationship? New evidence on artificial intelligence and new energy vehicles," Energy Economics, Elsevier, vol. 134(C).
    6. Yu, Dejian & Sheng, Libo, 2021. "Influence difference main path analysis: Evidence from DNA and blockchain domain citation networks," Journal of Informetrics, Elsevier, vol. 15(4).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0297192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.