IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0295427.html
   My bibliography  Save this article

Predicting asthma using imbalanced data modeling techniques: Evidence from 2019 Michigan BRFSS data

Author

Listed:
  • Nirajan Budhathoki
  • Ramesh Bhandari
  • Suraj Bashyal
  • Carl Lee

Abstract

Studies in the past have examined asthma prevalence and the associated risk factors in the United States using data from national surveys. However, the findings of these studies may not be relevant to specific states because of the different environmental and socioeconomic factors that vary across regions. The 2019 Behavioral Risk Factor Surveillance System (BRFSS) showed that Michigan had higher asthma prevalence rates than the national average. In this regard, we employ various modern machine learning techniques to predict asthma and identify risk factors associated with asthma among Michigan adults using the 2019 BRFSS data. After data cleaning, a sample of 10,337 individuals was selected for analysis, out of which 1,118 individuals (10.8%) reported having asthma during the survey period. Typical machine learning techniques often perform poorly due to imbalanced data issues. To address this challenge, we employed two synthetic data generation techniques, namely the Random Over-Sampling Examples (ROSE) and Synthetic Minority Over-Sampling Technique (SMOTE) and compared their performances. The overall performance of machine learning algorithms was improved using both methods, with ROSE performing better than SMOTE. Among the ROSE-adjusted models, we found that logistic regression, partial least squares, gradient boosting, LASSO, and elastic net had comparable performance, with sensitivity at around 50% and area under the curve (AUC) at around 63%. Due to ease of interpretability, logistic regression is chosen for further exploration of risk factors. Presence of chronic obstructive pulmonary disease, lower income, female sex, financial barrier to see a doctor due to cost, taken flu shot/spray in the past 12 months, 18–24 age group, Black, non-Hispanic group, and presence of diabetes are identified as asthma risk factors. This study demonstrates the potentiality of machine learning coupled with imbalanced data modeling approaches for predicting asthma from a large survey dataset. We conclude that the findings could guide early screening of at-risk asthma patients and designing appropriate interventions to improve care practices.

Suggested Citation

  • Nirajan Budhathoki & Ramesh Bhandari & Suraj Bashyal & Carl Lee, 2023. "Predicting asthma using imbalanced data modeling techniques: Evidence from 2019 Michigan BRFSS data," PLOS ONE, Public Library of Science, vol. 18(12), pages 1-17, December.
  • Handle: RePEc:plo:pone00:0295427
    DOI: 10.1371/journal.pone.0295427
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295427
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0295427&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0295427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lumley, Thomas, 2004. "Analysis of Complex Survey Samples," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 9(i08).
    2. Alamgir Kabir & Md Jahanur Rahman & Abu Ahmed Shamim & Rolf D W Klemm & Alain B Labrique & Mahbubur Rashid & Parul Christian & Keith P West Jr., 2017. "Identifying maternal and infant factors associated with newborn size in rural Bangladesh by partial least squares (PLS) regression analysis," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-16, December.
    3. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    4. Manal Alghamdi & Mouaz Al-Mallah & Steven Keteyian & Clinton Brawner & Jonathan Ehrman & Sherif Sakr, 2017. "Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharan Srinivas, 2020. "A Machine Learning-Based Approach for Predicting Patient Punctuality in Ambulatory Care Centers," IJERPH, MDPI, vol. 17(10), pages 1-15, May.
    2. Ram D. Joshi & Chandra K. Dhakal, 2021. "Predicting Type 2 Diabetes Using Logistic Regression and Machine Learning Approaches," IJERPH, MDPI, vol. 18(14), pages 1-17, July.
    3. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    4. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    7. Li, Li & Li, Han & Panagiotelis, Anastasios, 2025. "Boosting domain-specific models with shrinkage: An application in mortality forecasting," International Journal of Forecasting, Elsevier, vol. 41(1), pages 191-207.
    8. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    9. Maciej Berk{e}sewicz & Herman Cherniaiev & Robert Pater, 2021. "Estimating the number of entities with vacancies using administrative and online data," Papers 2106.03263, arXiv.org.
    10. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    11. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    12. María Adelaida Gómez & Ashton Trey Belew & Deninson Alejandro Vargas & Lina Giraldo-Parra & Neal Alexander & David E. Rebellón-Sánchez & Theresa A. Alexander & Najib M. El-Sayed, 2025. "Innate biosignature of treatment failure in human cutaneous leishmaniasis," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    13. Alexander Wettstein & Gabriel Jenni & Ida Schneider & Fabienne Kühne & Martin grosse Holtforth & Roberto La Marca, 2023. "Predictors of Psychological Strain and Allostatic Load in Teachers: Examining the Long-Term Effects of Biopsychosocial Risk and Protective Factors Using a LASSO Regression Approach," IJERPH, MDPI, vol. 20(10), pages 1-20, May.
    14. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    15. Daifeng Xiang & Gangsheng Wang & Jing Tian & Wanyu Li, 2023. "Global patterns and edaphic-climatic controls of soil carbon decomposition kinetics predicted from incubation experiments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Joel Podgorski & Oliver Kracht & Luis Araguas-Araguas & Stefan Terzer-Wassmuth & Jodie Miller & Ralf Straub & Rolf Kipfer & Michael Berg, 2024. "Groundwater vulnerability to pollution in Africa’s Sahel region," Nature Sustainability, Nature, vol. 7(5), pages 558-567, May.
    17. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    18. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    19. J. Michael Brick & Michael E. Jones, 2008. "Propensity to respond and nonresponse bias," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 51-73.
    20. Petri K M Purola & Joonas Taipale & Saku Väätäinen & Mika Harju & Seppo V P Koskinen & Hannu M T Uusitalo, 2023. "Price tag of glaucoma care is minor compared with the total direct and indirect costs of glaucoma: Results from nationwide survey and register data," PLOS ONE, Public Library of Science, vol. 18(12), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0295427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.