IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0295008.html
   My bibliography  Save this article

Knowledge domains and emerging trends of Genome-wide association studies in Alzheimer’s disease: A bibliometric analysis and visualization study from 2002 to 2022

Author

Listed:
  • Fanjing Kong
  • Tianyu Wu
  • Jingyi Dai
  • Jie Cai
  • Zhenwei Zhai
  • Zhishan Zhu
  • Ying Xu
  • Tao Sun

Abstract

Objectives: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a progressive decline in cognitive and behavioral function. Studies have shown that genetic factors are one of the main causes of AD risk. genome-wide association study (GWAS), as a novel and effective tool for studying the genetic risk of diseases, has attracted attention from researchers in recent years and a large number of studies have been conducted. This study aims to summarize the literature on GWAS in AD by bibliometric methods, analyze the current status, research hotspots and future trends in this field. Methods: We retrieved articles on GWAS in AD published between 2002 and 2022 from Web of Science. CiteSpace and VOSviewer software were applied to analyze the articles for the number of articles published, countries/regions and institutions of publication, authors and cited authors, highly cited literature, and research hotspots. Results: We retrieved a total of 2,751 articles. The United States had the highest number of publications in this field, and Columbia University was the institution with the most published articles. The identification of AD-related susceptibility genes and their effects on AD is one of the current research hotspots. Numerous risk genes have been identified, among which APOE, CLU, CD2AP, CD33, EPHA1, PICALM, CR1, ABCA7 and TREM2 are the current genes of interest. In addition, risk prediction for AD and research on other related diseases are also popular research directions in this field. Conclusion: This study conducted a comprehensive analysis of GWAS in AD and identified the current research hotspots and research trends. In addition, we also pointed out the shortcomings of current research and suggested future research directions. This study can provide researchers with information about the knowledge structure and emerging trends in the field of GWAS in AD and provide guidance for future research.

Suggested Citation

  • Fanjing Kong & Tianyu Wu & Jingyi Dai & Jie Cai & Zhenwei Zhai & Zhishan Zhu & Ying Xu & Tao Sun, 2024. "Knowledge domains and emerging trends of Genome-wide association studies in Alzheimer’s disease: A bibliometric analysis and visualization study from 2002 to 2022," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-28, January.
  • Handle: RePEc:plo:pone00:0295008
    DOI: 10.1371/journal.pone.0295008
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295008
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0295008&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0295008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Gate & Naresha Saligrama & Olivia Leventhal & Andrew C. Yang & Michael S. Unger & Jinte Middeldorp & Kelly Chen & Benoit Lehallier & Divya Channappa & Mark B. Los Santos & Alisha McBride & John , 2020. "Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease," Nature, Nature, vol. 577(7790), pages 399-404, January.
    2. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    3. Fyodor D. Urnov & Jeffrey C. Miller & Ya-Li Lee & Christian M. Beausejour & Jeremy M. Rock & Sheldon Augustus & Andrew C. Jamieson & Matthew H. Porteus & Philip D. Gregory & Michael C. Holmes, 2005. "Highly efficient endogenous human gene correction using designed zinc-finger nucleases," Nature, Nature, vol. 435(7042), pages 646-651, June.
    4. repec:plo:pone00:0079105 is not listed on IDEAS
    5. Jing Zhao & Yuan Fu & Yu Yamazaki & Yingxue Ren & Mary D. Davis & Chia-Chen Liu & Wenyan Lu & Xue Wang & Kai Chen & Yesesri Cherukuri & Lin Jia & Yuka A. Martens & Lucy Job & Francis Shue & Thanh Than, 2020. "APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer’s disease patient iPSC-derived cerebral organoids," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    6. Zihuai He & Linxi Liu & Chen Wang & Yann Guen & Justin Lee & Stephanie Gogarten & Fred Lu & Stephen Montgomery & Hua Tang & Edwin K. Silverman & Michael H. Cho & Michael Greicius & Iuliana Ionita-Laza, 2021. "Identification of putative causal loci in whole-genome sequencing data via knockoff statistics," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    7. Zipeng Liu & Yiming Qin & Tian Wu & Justin D. Tubbs & Larry Baum & Timothy Shin Heng Mak & Miaoxin Li & Yan Dora Zhang & Pak Chung Sham, 2023. "Reciprocal causation mixture model for robust Mendelian randomization analysis using genome-scale summary data," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lutz Bornmann & Robin Haunschild & Sven E. Hug, 2018. "Visualizing the context of citations referencing papers published by Eugene Garfield: a new type of keyword co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 427-437, February.
    2. Akinpelu, O.A. & Olaleye, O. & Fagbola, O., 2023. "The Soil Organic Matter Decomposers: A Bibliometric Analysis," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 9(4), August.
    3. Muhammad Farooq Islam & Ozge Can, 2024. "Integrating digital and sustainable entrepreneurship through business models: a bibliometric analysis," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 14(1), pages 1-18, December.
    4. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    5. J. Gómez-Verjan & I. Gonzalez-Sanchez & E. Estrella-Parra & R. Reyes-Chilpa, 2015. "Trends in the chemical and pharmacological research on the tropical trees Calophyllum brasiliense and Calophyllum inophyllum, a global context," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 1019-1030, November.
    6. Luis Araya-Castillo & Felipe Hernández-Perlines & Hugo Moraga & Antonio Ariza-Montes, 2021. "Scientometric Analysis of Research on Socioemotional Wealth," Sustainability, MDPI, vol. 13(7), pages 1-26, March.
    7. Loet Leydesdorff & Dieter Franz Kogler & Bowen Yan, 2017. "Mapping patent classifications: portfolio and statistical analysis, and the comparison of strengths and weaknesses," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1573-1591, September.
    8. Filippo Corsini & Rafael Laurenti & Franziska Meinherz & Francesco Paolo Appio & Luca Mora, 2019. "The Advent of Practice Theories in Research on Sustainable Consumption: Past, Current and Future Directions of the Field," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    9. Tuba Bircan & Almila Alkim Akdag Salah, 2022. "A Bibliometric Analysis of the Use of Artificial Intelligence Technologies for Social Sciences," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    10. Kumari, Rajni & Kumar, Manish & Vivekanand, V. & Pareek, Nidhi, 2023. "Chitin biorefinery: A narrative and prophecy of crustacean shell waste sustainable transformation into bioactives and renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    11. Luis Puente-Díaz & Doina Solís & Siu-heng Wong-Toro, 2024. "Comprehensive Bibliometric Analysis on High Hydrostatic Pressure as New Sustainable Technology for Food Processing: Key Concepts and Research Trends," Sustainability, MDPI, vol. 17(1), pages 1-18, December.
    12. Fatih Albayrak & Oğuz Poyrazoğlu, 2024. "A Systematic Literature Review on Lean, Industry 4.0, and Digital Factory," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 13486-13508, September.
    13. Migliavacca, Milena & Goodell, John W. & Paltrinieri, Andrea, 2023. "A bibliometric review of portfolio diversification literature," International Review of Financial Analysis, Elsevier, vol. 90(C).
    14. Zhengyao Liu & Jing Huang & Yonghong Li & Xiaokang Liu & Fei Qiang & Yiping He, 2025. "A Bibliometric Analysis of Geological Hazards Monitoring Technologies," Sustainability, MDPI, vol. 17(3), pages 1-15, January.
    15. Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability, Springer, vol. 2(4), pages 1345-1367, December.
    16. Muthukumar Perumal & Selvam Sekar & Paula C. S. Carvalho, 2024. "Global Investigations of Seawater Intrusion (SWI) in Coastal Groundwaters in the Last Two Decades (2000–2020): A Bibliometric Analysis," Sustainability, MDPI, vol. 16(3), pages 1-28, February.
    17. Massimiliano M. Pellegrini & Riccardo Rialti & Giacomo Marzi & Andrea Caputo, 2020. "Sport entrepreneurship: A synthesis of existing literature and future perspectives," International Entrepreneurship and Management Journal, Springer, vol. 16(3), pages 795-826, September.
    18. David Vérez & Luisa F. Cabeza, 2021. "Which Building Services Are Considered to Have Impact on Climate Change?," Energies, MDPI, vol. 14(13), pages 1-16, June.
    19. María Pinto & Rosaura Fernández-Pascual & David Caballero-Mariscal & Dora Sales, 2020. "Information literacy trends in higher education (2006–2019): visualizing the emerging field of mobile information literacy," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1479-1510, August.
    20. Francesco Ciampi & Alessandro Giannozzi & Giacomo Marzi & Edward I. Altman, 2021. "Rethinking SME default prediction: a systematic literature review and future perspectives," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2141-2188, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0295008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.