IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36490-4.html
   My bibliography  Save this article

Reciprocal causation mixture model for robust Mendelian randomization analysis using genome-scale summary data

Author

Listed:
  • Zipeng Liu

    (The University of Hong Kong
    The University of Hong Kong
    The University of Hong Kong)

  • Yiming Qin

    (The University of Hong Kong
    The University of Hong Kong
    The University of Hong Kong)

  • Tian Wu

    (The University of Hong Kong)

  • Justin D. Tubbs

    (The University of Hong Kong)

  • Larry Baum

    (The University of Hong Kong
    The University of Hong Kong
    The University of Hong Kong)

  • Timothy Shin Heng Mak

    (The University of Hong Kong)

  • Miaoxin Li

    (The University of Hong Kong
    Sun Yat-sen University
    Ministry of Education)

  • Yan Dora Zhang

    (The University of Hong Kong
    The University of Hong Kong)

  • Pak Chung Sham

    (The University of Hong Kong
    The University of Hong Kong
    The University of Hong Kong)

Abstract

Mendelian randomization using GWAS summary statistics has become a popular method to infer causal relationships across complex diseases. However, the widespread pleiotropy observed in GWAS has made the selection of valid instrumental variables problematic, leading to possible violations of Mendelian randomization assumptions and thus potentially invalid inferences concerning causation. Furthermore, current MR methods can examine causation in only one direction, so that two separate analyses are required for bi-directional analysis. In this study, we propose a ststistical framework, MRCI (Mixture model Reciprocal Causation Inference), to estimate reciprocal causation between two phenotypes simultaneously using the genome-scale summary statistics of the two phenotypes and reference linkage disequilibrium information. Simulation studies, including strong correlated pleiotropy, showed that MRCI obtained nearly unbiased estimates of causation in both directions, and correct Type I error rates under the null hypothesis. In applications to real GWAS data, MRCI detected significant bi-directional and uni-directional causal influences between common diseases and putative risk factors.

Suggested Citation

  • Zipeng Liu & Yiming Qin & Tian Wu & Justin D. Tubbs & Larry Baum & Timothy Shin Heng Mak & Miaoxin Li & Yan Dora Zhang & Pak Chung Sham, 2023. "Reciprocal causation mixture model for robust Mendelian randomization analysis using genome-scale summary data," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36490-4
    DOI: 10.1038/s41467-023-36490-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36490-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36490-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhihong Zhu & Zhili Zheng & Futao Zhang & Yang Wu & Maciej Trzaskowski & Robert Maier & Matthew R. Robinson & John J. McGrath & Peter M. Visscher & Naomi R. Wray & Jian Yang, 2018. "Causal associations between risk factors and common diseases inferred from GWAS summary data," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    2. Yingchang Lu & Felix R. Day & Stefan Gustafsson & Martin L. Buchkovich & Jianbo Na & Veronique Bataille & Diana L. Cousminer & Zari Dastani & Alexander W. Drong & Tõnu Esko & David M. Evans & Mario Fa, 2016. "New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk," Nature Communications, Nature, vol. 7(1), pages 1-15, April.
    3. Vasiliki Lagou & Reedik Mägi & Jouke- Jan Hottenga & Harald Grallert & John R. B. Perry & Nabila Bouatia-Naji & Letizia Marullo & Denis Rybin & Rick Jansen & Josine L. Min & Antigone S. Dimas & Anna U, 2021. "Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen Qiao & Julia Sidorenko & Joana A. Revez & Angli Xue & Xueling Lu & Katri Pärna & Harold Snieder & Peter M. Visscher & Naomi R. Wray & Loic Yengo, 2023. "Estimation and implications of the genetic architecture of fasting and non-fasting blood glucose," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Zhaotong Lin & Yangqing Deng & Wei Pan, 2021. "Combining the strengths of inverse-variance weighting and Egger regression in Mendelian randomization using a mixture of regressions model," PLOS Genetics, Public Library of Science, vol. 17(11), pages 1-25, November.
    3. Wenhan Chen & Yang Wu & Zhili Zheng & Ting Qi & Peter M. Visscher & Zhihong Zhu & Jian Yang, 2021. "Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Gemma Cadby & Corey Giles & Phillip E. Melton & Kevin Huynh & Natalie A. Mellett & Thy Duong & Anh Nguyen & Michelle Cinel & Alex Smith & Gavriel Olshansky & Tingting Wang & Marta Brozynska & Mike Ino, 2022. "Comprehensive genetic analysis of the human lipidome identifies loci associated with lipid homeostasis with links to coronary artery disease," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Yi-Qian Sun & Rebecca C Richmond & Yue Chen & Xiao-Mei Mai, 2020. "Mixed evidence for the relationship between periodontitis and Alzheimer’s disease: A bidirectional Mendelian randomization study," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-9, January.
    6. Matthew T. Patrick & Qinmengge Li & Rachael Wasikowski & Nehal Mehta & Johann E. Gudjonsson & James T. Elder & Xiang Zhou & Lam C. Tsoi, 2022. "Shared genetic risk factors and causal association between psoriasis and coronary artery disease," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. William R. Reay & Dylan J. Kiltschewskij & Maria A. Biase & Zachary F. Gerring & Kousik Kundu & Praveen Surendran & Laura A. Greco & Erin D. Clarke & Clare E. Collins & Alison M. Mondul & Demetrius Al, 2024. "Genetic influences on circulating retinol and its relationship to human health," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Charley Xia & Sarah J. Pickett & David C. M. Liewald & Alexander Weiss & Gavin Hudson & W. David Hill, 2023. "The contributions of mitochondrial and nuclear mitochondrial genetic variation to neuroticism," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. William R. Reay & Michael P. Geaghan & Murray J. Cairns, 2022. "The genetic architecture of pneumonia susceptibility implicates mucin biology and a relationship with psychiatric illness," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. M d Mesbah Uddin & Ngoc Quynh H. Nguyen & Bing Yu & Jennifer A. Brody & Akhil Pampana & Tetsushi Nakao & Myriam Fornage & Jan Bressler & Nona Sotoodehnia & Joshua S. Weinstock & Michael C. Honigberg &, 2022. "Clonal hematopoiesis of indeterminate potential, DNA methylation, and risk for coronary artery disease," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Jessica M B Rees & Angela M Wood & Frank Dudbridge & Stephen Burgess, 2019. "Robust methods in Mendelian randomization via penalization of heterogeneous causal estimates," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-24, September.
    12. Jayshree Advani & Puja A. Mehta & Andrew R. Hamel & Sudeep Mehrotra & Christina Kiel & Tobias Strunz & Ximena Corso-Díaz & Madeline Kwicklis & Freekje Asten & Rinki Ratnapriya & Emily Y. Chew & Dena G, 2024. "QTL mapping of human retina DNA methylation identifies 87 gene-epigenome interactions in age-related macular degeneration," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    13. Qing Cheng & Xiao Zhang & Lin S. Chen & Jin Liu, 2022. "Mendelian randomization accounting for complex correlated horizontal pleiotropy while elucidating shared genetic etiology," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Marie C. Sadler & Chiara Auwerx & Kaido Lepik & Eleonora Porcu & Zoltán Kutalik, 2022. "Quantifying the role of transcript levels in mediating DNA methylation effects on complex traits and diseases," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Fengzhe Xu & Evan Yi-Wen Yu & Xue Cai & Liang Yue & Li-peng Jing & Xinxiu Liang & Yuanqing Fu & Zelei Miao & Min Yang & Menglei Shuai & Wanglong Gou & Congmei Xiao & Zhangzhi Xue & Yuting Xie & Sainan, 2023. "Genome-wide genotype-serum proteome mapping provides insights into the cross-ancestry differences in cardiometabolic disease susceptibility," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Ewelina Maculewicz & Agata Leońska-Duniec & Andrzej Mastalerz & Ewa Szarska & Aleksandra Garbacz & Tomasz Lepionka & Roman Łakomy & Anna Anyżewska & Jerzy Bertrandt, 2022. "The Influence of FTO, FABP2, LEP, LEPR, and MC4R Genes on Obesity Parameters in Physically Active Caucasian Men," IJERPH, MDPI, vol. 19(10), pages 1-11, May.
    17. Siqi Xu & Peng Wang & Wing Kam Fung & Zhonghua Liu, 2023. "A novel penalized inverse‐variance weighted estimator for Mendelian randomization with applications to COVID‐19 outcomes," Biometrics, The International Biometric Society, vol. 79(3), pages 2184-2195, September.
    18. Haoran Xue & Wei Pan, 2020. "Inferring causal direction between two traits in the presence of horizontal pleiotropy with GWAS summary data," PLOS Genetics, Public Library of Science, vol. 16(11), pages 1-30, November.
    19. Clara Albiñana & Zhihong Zhu & Nis Borbye-Lorenzen & Sanne Grundvad Boelt & Arieh S. Cohen & Kristin Skogstrand & Naomi R. Wray & Joana A. Revez & Florian Privé & Liselotte V. Petersen & Cynthia M. Bu, 2023. "Genetic correlates of vitamin D-binding protein and 25-hydroxyvitamin D in neonatal dried blood spots," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Adrien Georges & Min-Lee Yang & Takiy-Eddine Berrandou & Mark K. Bakker & Ozan Dikilitas & Soto Romuald Kiando & Lijiang Ma & Benjamin A. Satterfield & Sebanti Sengupta & Mengyao Yu & Jean-François De, 2021. "Genetic investigation of fibromuscular dysplasia identifies risk loci and shared genetics with common cardiovascular diseases," Nature Communications, Nature, vol. 12(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36490-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.