IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0292032.html
   My bibliography  Save this article

Impact of minimum distance constraints on sheet metal waste for plasma cutting

Author

Listed:
  • Matheus Francescatto
  • Alvaro Luiz Neuenfeldt Júnior
  • Elsa Silva
  • João Carlos Furtado
  • Dani Bromberger

Abstract

We approached the two-dimensional rectangular strip packing problem (2D-SPP), where the main goal is to pack a given number of rectangles without any overlap to minimize the height of the strip. Real-life constraints must be considered when developing 2D-SPP algorithms to deliver solutions that will improve the cutting processes. In the 2D-SPP literature, a gap related to studies approaching constraints in real-life scenarios was identified. Therefore, the impact of real-life constraints found in the plasma cutting process in sheet metal waste was analyzed. A mathematical model from the literature was modified to obtain packing arrangements with plasma cutting constraints. The combination of size and number of rectangles, as well as strip width, was the main factor that affected the packing arrangement, limiting the allocation of rectangles and generating empty spaces. In summary, considering the sheet metal waste context, instances with smaller widths should be avoided in practical operations for high minimum distance constraint values, returning the worst packing arrangements. For low minimum distance constraint values, smaller width instances can be used in practical operations, as the packing arrangement is acceptable. Finally, this article can reduce material waste and enhance the cutting process in the sheet metal industry, by showing packing characteristics which lead to higher amounts of raw material waste.

Suggested Citation

  • Matheus Francescatto & Alvaro Luiz Neuenfeldt Júnior & Elsa Silva & João Carlos Furtado & Dani Bromberger, 2023. "Impact of minimum distance constraints on sheet metal waste for plasma cutting," PLOS ONE, Public Library of Science, vol. 18(9), pages 1-23, September.
  • Handle: RePEc:plo:pone00:0292032
    DOI: 10.1371/journal.pone.0292032
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292032
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0292032&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0292032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rinaldi, Franca & Franz, Annamaria, 2007. "A two-dimensional strip cutting problem with sequencing constraint," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1371-1384, December.
    2. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    3. Jie Fang & Yunqing Rao & Mingliang Shi, 2023. "A deep reinforcement learning algorithm for the rectangular strip packing problem," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-20, March.
    4. Nestor M Cid-Garcia & Yasmin A Rios-Solis, 2021. "Exact solutions for the 2d-strip packing problem using the positions-and-covering methodology," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-20, January.
    5. Parreño, F. & Alvarez-Valdes, R., 2021. "Mathematical models for a cutting problem in the glass manufacturing industry," Omega, Elsevier, vol. 103(C).
    6. Kenmochi, Mitsutoshi & Imamichi, Takashi & Nonobe, Koji & Yagiura, Mutsunori & Nagamochi, Hiroshi, 2009. "Exact algorithms for the two-dimensional strip packing problem with and without rotations," European Journal of Operational Research, Elsevier, vol. 198(1), pages 73-83, October.
    7. Silvano Martello & Michele Monaci & Daniele Vigo, 2003. "An Exact Approach to the Strip-Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 15(3), pages 310-319, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvaro Neuenfeldt Júnior & Matheus Francescatto & Olinto Araújo & David Disconzi & Gabriel Stieler, 2023. "The machining torch movement for the rectangular plasma sheet metal cut," PLOS ONE, Public Library of Science, vol. 18(9), pages 1-24, September.
    2. Silva, Elsa & Oliveira, José Fernando & Silveira, Tiago & Mundim, Leandro & Carravilla, Maria Antónia, 2023. "The Floating-Cuts model: a general and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems," Omega, Elsevier, vol. 114(C).
    3. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    4. Castro, Pedro M. & Oliveira, José F., 2011. "Scheduling inspired models for two-dimensional packing problems," European Journal of Operational Research, Elsevier, vol. 215(1), pages 45-56, November.
    5. de Queiroz, Thiago A. & Miyazawa, Flávio K., 2013. "Two-dimensional strip packing problem with load balancing, load bearing and multi-drop constraints," International Journal of Production Economics, Elsevier, vol. 145(2), pages 511-530.
    6. Wei, Lijun & Oon, Wee-Chong & Zhu, Wenbin & Lim, Andrew, 2011. "A skyline heuristic for the 2D rectangular packing and strip packing problems," European Journal of Operational Research, Elsevier, vol. 215(2), pages 337-346, December.
    7. Thiago Queiroz & Flávio Miyazawa, 2014. "Order and static stability into the strip packing problem," Annals of Operations Research, Springer, vol. 223(1), pages 137-154, December.
    8. Leung, Stephen C.H. & Zhang, Defu & Sim, Kwang Mong, 2011. "A two-stage intelligent search algorithm for the two-dimensional strip packing problem," European Journal of Operational Research, Elsevier, vol. 215(1), pages 57-69, November.
    9. Wei, Lijun & Oon, Wee-Chong & Zhu, Wenbin & Lim, Andrew, 2012. "A reference length approach for the 3D strip packing problem," European Journal of Operational Research, Elsevier, vol. 220(1), pages 37-47.
    10. Önder Aşık & Ender Özcan, 2009. "Bidirectional best-fit heuristic for orthogonal rectangular strip packing," Annals of Operations Research, Springer, vol. 172(1), pages 405-427, November.
    11. Wei, Lijun & Hu, Qian & Lim, Andrew & Liu, Qiang, 2018. "A best-fit branch-and-bound heuristic for the unconstrained two-dimensional non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 270(2), pages 448-474.
    12. Andreas Bortfeldt & Sabine Jungmann, 2012. "A tree search algorithm for solving the multi-dimensional strip packing problem with guillotine cutting constraint," Annals of Operations Research, Springer, vol. 196(1), pages 53-71, July.
    13. Jean-François Côté & Manuel Iori, 2018. "The Meet-in-the-Middle Principle for Cutting and Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 646-661, November.
    14. Francisco Trespalacios & Ignacio E. Grossmann, 2017. "Symmetry breaking for generalized disjunctive programming formulation of the strip packing problem," Annals of Operations Research, Springer, vol. 258(2), pages 747-759, November.
    15. Gahm, Christian & Uzunoglu, Aykut & Wahl, Stefan & Ganschinietz, Chantal & Tuma, Axel, 2022. "Applying machine learning for the anticipation of complex nesting solutions in hierarchical production planning," European Journal of Operational Research, Elsevier, vol. 296(3), pages 819-836.
    16. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    17. Marco Antonio Boschetti & Lorenza Montaletti, 2010. "An Exact Algorithm for the Two-Dimensional Strip-Packing Problem," Operations Research, INFORMS, vol. 58(6), pages 1774-1791, December.
    18. Zipfel, Benedikt & Tamke, Felix & Kuttner, Leopold, 2025. "A new branch-and-cut approach for integrated planning in additive manufacturing," European Journal of Operational Research, Elsevier, vol. 322(2), pages 427-447.
    19. Gašper Žerovnik & Janez Žerovnik, 2011. "Constructive heuristics for the canister filling problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(3), pages 371-389, September.
    20. Germán Pantoja-Benavides & David Álvarez-Martínez & Francisco Parreño Torres, 2024. "The Normalized Direct Trigonometry Model for the Two-Dimensional Irregular Strip Packing Problem," Mathematics, MDPI, vol. 12(15), pages 1-25, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0292032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.