Yield prediction for crops by gradient-based algorithms
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0291928
Download full text from publisher
References listed on IDEAS
- Hao Chen & Qiulan Wan & Yurong Wang, 2014. "Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models," Energies, MDPI, vol. 7(7), pages 1-14, July.
- Paudel, Dilli & Boogaard, Hendrik & de Wit, Allard & Janssen, Sander & Osinga, Sjoukje & Pylianidis, Christos & Athanasiadis, Ioannis N., 2021. "Machine learning for large-scale crop yield forecasting," Agricultural Systems, Elsevier, vol. 187(C).
- Awais Ali & Tajamul Hussain & Noramon Tantashutikun & Nurda Hussain & Giacomo Cocetta, 2023. "Application of Smart Techniques, Internet of Things and Data Mining for Resource Use Efficient and Sustainable Crop Production," Agriculture, MDPI, vol. 13(2), pages 1-22, February.
- Jig Han Jeong & Jonathan P Resop & Nathaniel D Mueller & David H Fleisher & Kyungdahm Yun & Ethan E Butler & Dennis J Timlin & Kyo-Moon Shim & James S Gerber & Vangimalla R Reddy & Soo-Hyung Kim, 2016. "Random Forests for Global and Regional Crop Yield Predictions," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-15, June.
- Chen Li & Xiangmu Jin & Junjun Zhi & Yao Luo & Mengni Li & Wangbing Liu, 2022. "Evaluating Whether Farmland Consolidation Is a Feasible Way to Achieve a Balance of Potential Crop Production in Southeastern Coastal China," Land, MDPI, vol. 11(11), pages 1-17, October.
- Johnathon Shook & Tryambak Gangopadhyay & Linjiang Wu & Baskar Ganapathysubramanian & Soumik Sarkar & Asheesh K Singh, 2021. "Crop yield prediction integrating genotype and weather variables using deep learning," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-19, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Oumnia Ennaji & Sfia Baha & Leonardus Vergutz & Achraf El Allali, 2024. "Gradient boosting for yield prediction of elite maize hybrid ZhengDan 958," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-16, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Schmidt, Lorenz & Odening, Martin & Schlanstein, Johann & Ritter, Matthias, "undated". "Estimation of the Farm-Level Yield-Weather-Relation Using Machine Learning," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317075, German Association of Agricultural Economists (GEWISOLA).
- Timsina, Jagadish & Dutta, Sudarshan & Devkota, Krishna Prasad & Chakraborty, Somsubhra & Neupane, Ram Krishna & Bishta, Sudarshan & Amgain, Lal Prasad & Singh, Vinod K. & Islam, Saiful & Majumdar, Ka, 2021. "Improved nutrient management in cereals using Nutrient Expert and machine learning tools: Productivity, profitability and nutrient use efficiency," Agricultural Systems, Elsevier, vol. 192(C).
- Kouame, Anselme K.K. & Bindraban, Prem S. & Kissiedu, Isaac N. & Atakora, Williams K. & El Mejahed, Khalil, 2023. "Identifying drivers for variability in maize (Zea mays L.) yield in Ghana: A meta-regression approach," Agricultural Systems, Elsevier, vol. 209(C).
- Huo, Dongyang & Malik, Asad Waqar & Ravana, Sri Devi & Rahman, Anis Ur & Ahmedy, Ismail, 2024. "Mapping smart farming: Addressing agricultural challenges in data-driven era," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
- Silva, J.F. & Santos, J.L. & Ribeiro, P.F. & Marta-Pedroso, C. & Magalhães, M.R. & Moreira, F., 2024. "A farming systems approach to assess synergies and trade-offs among ecosystem services," Ecosystem Services, Elsevier, vol. 65(C).
- Ahmed, Moiz Uddin & Hussain, Iqbal, 2022. "Prediction of Wheat Production Using Machine Learning Algorithms in northern areas of Pakistan," Telecommunications Policy, Elsevier, vol. 46(6).
- Yongli Wang & Xiangyi Zhou & Hao Liu & Xichang Chen & Zixin Yan & Dexin Li & Chang Liu & Jiarui Wang, 2023. "Evaluation of the Maturity of Urban Energy Internet Development Based on AHP-Entropy Weight Method and Improved TOPSIS," Energies, MDPI, vol. 16(13), pages 1-18, July.
- Cyprien Mugemangango, Joseph Nzabanita, Dieudonne Ndaruhuye Muhoza, Nathan Cahill, 2024. "Comparative Analysis of Machine Learning Models for Predicting Rice Yield: Insights from Agricultural Inputs and Practices in Rwanda," Research on World Agricultural Economy, Nan Yang Academy of Sciences Pte Ltd (NASS), vol. 5(4), November.
- Javad Seyedmohammadi & Mir Naser Navidi & Ali Zeinadini & Richard W. McDowell, 2024. "Random forest, an efficient smart technique for analyzing the influence of soil properties on pistachio yield," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(1), pages 2615-2636, January.
- Schmidt, Lorenz & Odening, Martin & Schlanstein, Johann & Ritter, Matthias, 2022. "Exploring the weather-yield nexus with artificial neural networks," Agricultural Systems, Elsevier, vol. 196(C).
- Oyenike Mary Olanrewaju & Eli Adama Jiya & Faith Oluwatosin Echobu, 2024. "Intelligent Maize Yield Prediction Model Based on Plant Attributes and Machine Learning Algorithms," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(7), pages 1097-1104, July.
- Anh Ngoc-Lan Huynh & Ravinesh C. Deo & Duc-Anh An-Vo & Mumtaz Ali & Nawin Raj & Shahab Abdulla, 2020. "Near Real-Time Global Solar Radiation Forecasting at Multiple Time-Step Horizons Using the Long Short-Term Memory Network," Energies, MDPI, vol. 13(14), pages 1-30, July.
- Indy Man Kit Ho & Anthony Weldon & Jason Tze Ho Yong & Candy Tze Tim Lam & Jaime Sampaio, 2023. "Using Machine Learning Algorithms to Pool Data from Meta-Analysis for the Prediction of Countermovement Jump Improvement," IJERPH, MDPI, vol. 20(10), pages 1-15, May.
- Truong Ngoc Cuong & Sam-Sang You & Le Ngoc Bao Long & Hwan-Seong Kim, 2022. "Seaport Resilience Analysis and Throughput Forecast Using a Deep Learning Approach: A Case Study of Busan Port," Sustainability, MDPI, vol. 14(21), pages 1-25, October.
- Zhou, Hongkui & Huang, Fudeng & Lou, Weidong & Gu, Qing & Ye, Ziran & Hu, Hao & Zhang, Xiaobin, 2025. "Yield prediction through UAV-based multispectral imaging and deep learning in rice breeding trials," Agricultural Systems, Elsevier, vol. 223(C).
- Helder Fraga & Teresa R. Freitas & Marco Moriondo & Daniel Molitor & João A. Santos, 2024. "Determining the Climatic Drivers for Wine Production in the Côa Region (Portugal) Using a Machine Learning Approach," Land, MDPI, vol. 13(6), pages 1-16, May.
- Haider A. Khan & Shahryar Ghorbani & Elham Shabani & Shahab S. Band, 2024. "Enhancement of Neural Networks Model’s Predictions of Currencies Exchange Rates by Phase Space Reconstruction and Harris Hawks’ Optimization," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 835-860, February.
- Florian Schierhorn & Max Hofmann & Taras Gagalyuk & Igor Ostapchuk & Daniel Müller, 2021.
"Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages,"
Climatic Change, Springer, vol. 169(3), pages 1-19, December.
- Schierhorn, Florian & Hofmann, Max & Gagalyuk, Taras & Ostapchuk, Igor & Müller, Daniel, 2021. "Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 169.
- Qiu, Zhiguo & Lazar, Emese & Nakata, Keiichi, 2024. "VaR and ES forecasting via recurrent neural network-based stateful models," International Review of Financial Analysis, Elsevier, vol. 92(C).
- NICOLAE Simona & GRIGORE George-Eduard & MUȘETESCU Radu-Cristian, 2022. "The Use of GARCH Autoregressive Models in Estimating and Forecasting the Crude Oil Volatility," European Journal of Interdisciplinary Studies, Bucharest Economic Academy, issue 01, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0291928. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.