IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0291504.html
   My bibliography  Save this article

Analysis of left-turn behaviors of non-motorized vehicles and vehicle-bicycle conflicts

Author

Listed:
  • Tianjun Feng
  • Jingyao Liu
  • Chunyan Liang
  • Xiujuan Tian
  • Chun Chen
  • Keke Liu

Abstract

In order to further study the expansion characteristics of left-turning non-motorized vehicles at intersections and the relationship between expansion characteristics and vehicle-bicycle conflicts, the trajectory point data of left-turning non-motorized vehicles are extracted using video trajectory tracking technology, and construct the cubic curve expansion envelope equation with the highest fitting degree. For the purpose of quantifying the expansion degree of non-motor vehicles after starting, two intersections in Guangxi Zhuang Autonomous Region were selected for case analysis, and the numerical range of expansion degree of the intersection with a left-turn waiting area and the intersection without a left-turn waiting area was obtained. Study the mathematical relationship between the expansion degree and its influencing factors, and establish the multivariate nonlinear regression equation between the expansion degree and the left-turn non-motorized vehicle flow, the number of parallel non-motorized vehicles, and the left-turn green light time. Analyze the vehicle-bicycle conflicts caused by the expansion of left-turning non-motorized vehicles, determine the essential factors affecting the number of non-motorized vehicles, and establish the multiple linear regression equation between the number of non-motorized vehicles and the number of left-turning non-motorized vehicles, the expansion degree, and the number of parallel non-motorized vehicles, the results show that the model has high accuracy. By analyzing the expansion characteristics of left-turning non-motorized vehicles at intersections, the relationship between different influencing factors and the expansion degree is obtained. Then the vehicle-bicycle conflicts under the influence of expansion characteristics is analyzed, providing theoretical ideas for improving traffic efficiency and optimizing traffic organization at intersections.

Suggested Citation

  • Tianjun Feng & Jingyao Liu & Chunyan Liang & Xiujuan Tian & Chun Chen & Keke Liu, 2023. "Analysis of left-turn behaviors of non-motorized vehicles and vehicle-bicycle conflicts," PLOS ONE, Public Library of Science, vol. 18(9), pages 1-22, September.
  • Handle: RePEc:plo:pone00:0291504
    DOI: 10.1371/journal.pone.0291504
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291504
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0291504&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0291504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cherry, Christopher & Cervero, Robert, 2007. "Use characteristics and mode choice behavior of electric bike users in China," Transport Policy, Elsevier, vol. 14(3), pages 247-257, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingchen Yan & Tao Wang & Xiaofei Ye & Jun Chen & Zhen Yang & Hua Bai, 2018. "Recommended Widths for Separated Bicycle Lanes Considering Abreast Riding and Overtaking," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    2. Ziwen Ling & Christopher R. Cherry & John H. MacArthur & Jonathan X. Weinert, 2017. "Differences of Cycling Experiences and Perceptions between E-Bike and Bicycle Users in the United States," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    3. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    4. Zhibin Li & Wei Wang & Chen Yang & Haoyang Ding, 2017. "Bicycle mode share in China: a city-level analysis of long term trends," Transportation, Springer, vol. 44(4), pages 773-788, July.
    5. Changxi Ma & Dong Yang & Jibiao Zhou & Zhongxiang Feng & Quan Yuan, 2019. "Risk Riding Behaviors of Urban E-Bikes: A Literature Review," IJERPH, MDPI, vol. 16(13), pages 1-18, June.
    6. Xingchen Yan & Tao Wang & Jun Chen & Xiaofei Ye & Zhen Yang & Hua Bai, 2019. "Analysis of the Characteristics and Number of Bicycle–Passenger Conflicts at Bus Stops for Improving Safety," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    7. Sun, Shan & Guo, Liang & Yang, Shuo & Cao, Jason, 2024. "Exploring the contributions of Ebike ownership, transit access, and the built environment to car ownership in a developing city," Journal of Transport Geography, Elsevier, vol. 116(C).
    8. Nakamura, Hiroki & Abe, Naoya, 2016. "Tourist decisions in renting various personal travel modes: A case study in Kitakyushu City, Japan," Tourism Management, Elsevier, vol. 55(C), pages 85-93.
    9. Laurent GOMEZ, 2024. "La mobilité quotidienne des immigrés en France," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 59, pages 79-107.
    10. Nakamura, Hiroki & Uchida, Akira & Managi, Shunsuke, 2019. "Relationship between community-sharing of new personal transportation and local residents’ daily life consciousness," Economic Analysis and Policy, Elsevier, vol. 61(C), pages 104-110.
    11. Alexander Bigazzi & Robin Lindsey, 2019. "A utility-based bicycle speed choice model with time and energy factors," Transportation, Springer, vol. 46(3), pages 995-1009, June.
    12. Cherry, Christopher R. & Yang, Hongtai & Jones, Luke R. & He, Min, 2016. "Dynamics of electric bike ownership and use in Kunming, China," Transport Policy, Elsevier, vol. 45(C), pages 127-135.
    13. Changxi Ma & Jibiao Zhou & Dong Yang & Yuanyuan Fan, 2020. "Research on the Relationship between the Individual Characteristics of Electric Bike Riders and Illegal Speeding Behavior: A Questionnaire-Based Study," Sustainability, MDPI, vol. 12(3), pages 1-12, January.
    14. Zhang, Hua & Shaheen, Susan PhD & Chen, Xingpeng, 2013. "Bicycle Evolution in China: From the 1900s to the Present," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt05k9k6b6, Institute of Transportation Studies, UC Berkeley.
    15. Elliot Fishman & Christopher Cherry, 2016. "E-bikes in the Mainstream: Reviewing a Decade of Research," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 72-91, January.
    16. Jun Li & Jiachao Shen & Bicen Jia, 2021. "Exploring Intention to Use Shared Electric Bicycles by the Extended Theory of Planned Behavior," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
    17. Nematchoua, ModesteKameni & Deuse, Caroline & Cools, Mario & Reiter, Sigrid, 2020. "Evaluation of the potential of classic and electric bicycle commuting as an impetus for the transition towards environmentally sustainable cities: A case study of the university campuses in Liege, Bel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    18. Geoffrey Rose, 2012. "E-bikes and urban transportation: emerging issues and unresolved questions," Transportation, Springer, vol. 39(1), pages 81-96, January.
    19. Mathijs Haas & Maarten Kroesen & Caspar Chorus & Sascha Hoogendoorn-Lanser & Serge Hoogendoorn, 2022. "E-bike user groups and substitution effects: evidence from longitudinal travel data in the Netherlands," Transportation, Springer, vol. 49(3), pages 815-840, June.
    20. Ou, Hui & Tang, Tie-Qiao & Rui, Ying-Xu & Zhou, Jie-Ming, 2018. "Electric bicycle management and control at a signalized intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1000-1008.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0291504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.