IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0287544.html
   My bibliography  Save this article

A different method of fault feature extraction under noise disturbance and degradation trend estimation with system resilience for rolling bearings

Author

Listed:
  • Baoshan Zhang
  • Jilian Guo
  • Feng Zhou
  • Xuan Wang
  • Shengjun Wei

Abstract

Due to the effects of noise disturbances and system resilience, the current methods for rolling bearing fault feature extraction and degradation trend estimation can hardly achieve more satisfactory results. To address the above issues, we propose a different method for fault feature extraction and degradation trend estimation. Firstly, we preset the Bayesian inference criterion to evaluate the complexity of the denoised vibration signal. When its complexity reaches a minimum, the noise disturbances are exactly removed. Secondly, we define the system resilience obtained by the Bayesian network as the intrinsic index of the system, which is used to correct the equipment degradation trend obtained by the multivariate status estimation technique. Finally, the effectiveness of the proposed method is verified by the completeness of the extracted fault features and the accuracy of the degradation trend estimation over the whole life cycle of the bearing degradation data.

Suggested Citation

  • Baoshan Zhang & Jilian Guo & Feng Zhou & Xuan Wang & Shengjun Wei, 2023. "A different method of fault feature extraction under noise disturbance and degradation trend estimation with system resilience for rolling bearings," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-22, July.
  • Handle: RePEc:plo:pone00:0287544
    DOI: 10.1371/journal.pone.0287544
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287544
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0287544&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0287544?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tran, Huy T. & Balchanos, Michael & Domerçant, Jean Charles & Mavris, Dimitri N., 2017. "A framework for the quantitative assessment of performance-based system resilience," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 73-84.
    2. Francis, Royce & Bekera, Behailu, 2014. "A metric and frameworks for resilience analysis of engineered and infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 90-103.
    3. Zhao, S. & Liu, X. & Zhuo, Y., 2017. "Hybrid Hidden Markov Models for resilience metrics in a dynamic infrastructure system," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 84-97.
    4. Park, B. U. & Kim, W. C. & Jones, M. C., 1997. "On identity reproducing nonparametric regression estimators," Statistics & Probability Letters, Elsevier, vol. 32(3), pages 279-290, March.
    5. Kammouh, Omar & Gardoni, Paolo & Cimellaro, Gian Paolo, 2020. "Probabilistic framework to evaluate the resilience of engineering systems using Bayesian and dynamic Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    6. Yang, Bofan & Zhang, Lin & Zhang, Bo & Wang, Wenfeng & Zhang, Minglinag, 2021. "Resilience Metric of Equipment System: Theory, Measurement and Sensitivity Analysis," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    2. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Amanda Melendez & David Caballero-Russi & Mariantonieta Gutierrez Soto & Luis Felipe Giraldo, 2022. "Computational models of community resilience," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1121-1152, March.
    4. Cai, Baoping & Zhang, Yanping & Wang, Haifeng & Liu, Yonghong & Ji, Renjie & Gao, Chuntan & Kong, Xiangdi & Liu, Jing, 2021. "Resilience evaluation methodology of engineering systems with dynamic-Bayesian-network-based degradation and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    5. Cheng, Yao & Elsayed, E.A. & Chen, Xi, 2021. "Random Multi Hazard Resilience Modeling of Engineered Systems and Critical Infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Hu, Jinqiu & Khan, Faisal & Zhang, Laibin, 2021. "Dynamic resilience assessment of the Marine LNG offloading system," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    7. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Das, Laya & Munikoti, Sai & Natarajan, Balasubramaniam & Srinivasan, Babji, 2020. "Measuring smart grid resilience: Methods, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    9. Cai, Baoping & Xie, Min & Liu, Yonghong & Liu, Yiliu & Feng, Qiang, 2018. "Availability-based engineering resilience metric and its corresponding evaluation methodology," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 216-224.
    10. Ramadhani, Adhitya & Khan, Faisal & Colbourne, Bruce & Ahmed, Salim & Taleb-Berrouane, Mohammed, 2022. "Resilience assessment of offshore structures subjected to ice load considering complex dependencies," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    11. Uday, Payuna & Chandrahasa, Rakshit & Marais, Karen, 2019. "System Importance Measures: Definitions and Application to System-of-Systems Analysis," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    12. Sun, Hao & Yang, Ming & Wang, Haiqing, 2022. "A virtual experiment for measuring system resilience: A case of chemical process systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    13. Wei, Yian & Cheng, Yao & Liao, Haitao, 2024. "Optimal resilience-based restoration of a system subject to recurrent dependent hazards," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    14. Zhu, Chunli & Wu, Jianping & Liu, Mingyu & Luan, Jianlin & Li, Tingting & Hu, Kezhen, 2020. "Cyber-physical resilience modelling and assessment of urban roadway system interrupted by rainfall," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    15. Márcio das Chagas Moura & Helder Henrique Lima Diniz & Enrique López Droguett & Beatriz Sales da Cunha & Isis Didier Lins & Vicente Ribeiro Simoni, 2017. "Embedding resilience in the design of the electricity supply for industrial clients," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-33, November.
    16. Sun, Hao & Yang, Ming & Zio, Enrico & Li, Xinhong & Lin, Xiaofei & Huang, Xinjie & Wu, Qun, 2024. "A simulation-based approach for resilience assessment of process system: A case of LNG terminal system," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    17. Sun, Hao & Wang, Haiqing & Yang, Ming & Reniers, Genserik, 2022. "A STAMP-based approach to quantitative resilience assessment of chemical process systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    18. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    19. Sun, Qin & Li, Hongxu & Wang, Yuzhi & Zhang, Yingchao, 2022. "Multi-swarm-based cooperative reconfiguration model for resilient unmanned weapon system-of-systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    20. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0287544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.