IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0287433.html
   My bibliography  Save this article

Football players’ strength training method using image processing based on machine learning

Author

Listed:
  • Xiaoxiang Cao
  • Xiaodong Zhao
  • Huan Tang
  • Nianchun Fan
  • Fateh Zereg

Abstract

This work addresses the declining physical fitness levels observed in both football players and the general population. The objective is to investigate the impact of functional strength training on the physical capabilities of football players and to develop a machine learning-based approach for posture recognition. A total of 116 adolescents aged 8 to 13 participating in football training are randomly assigned to either an experimental group (n = 60) or a control group (n = 56). Both groups underwent 24 training sessions, with the experimental group engaging in 15–20 minutes of functional strength training after each session. Machine learning techniques, specifically the backpropagation neural network (BPNN) in deep learning, are utilized to analyze the kicking actions of football players. Movement speed, sensitivity, and strength are employed as input vectors for the BPNN to compare the images of players’ movements, while the similarity between the kicking actions and standard movements served as the output result to enhance training efficiency. The experimental group’s kicking scores are compared to their pre-experiment scores, demonstrating a statistically significant improvement. Moreover, statistically significant differences are observed in the 5*25m shuttle running, throwing, and set kicking between the control and experimental groups. These findings highlight the significant enhancement in strength and sensitivity achieved through functional strength training in football players. The results contribute to the development of training programs for football players and the overall improvement of training efficiency.

Suggested Citation

  • Xiaoxiang Cao & Xiaodong Zhao & Huan Tang & Nianchun Fan & Fateh Zereg, 2023. "Football players’ strength training method using image processing based on machine learning," PLOS ONE, Public Library of Science, vol. 18(6), pages 1-21, June.
  • Handle: RePEc:plo:pone00:0287433
    DOI: 10.1371/journal.pone.0287433
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287433
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0287433&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0287433?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing & Guo, Haixiang, 2017. "Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm," Applied Energy, Elsevier, vol. 190(C), pages 390-407.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Pradhan, Biswajeet & Mai, Ngoc-Luan & Vu, Diep-Anh, 2021. "Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms," Resources Policy, Elsevier, vol. 73(C).
    3. Jing Bai & Jiahui Wang & Jin Ran & Xingyuan Li & Chuang Tu, 2024. "An Improved Neural Network Algorithm for Energy Consumption Forecasting," Sustainability, MDPI, vol. 16(21), pages 1-19, October.
    4. Qin Lu & Jingwen Liao & Kechi Chen & Yanhui Liang & Yu Lin, 2024. "Predicting Natural Gas Prices Based on a Novel Hybrid Model with Variational Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 639-678, February.
    5. Yang, Zhongshan & Wang, Jian, 2018. "A hybrid forecasting approach applied in wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Energy, Elsevier, vol. 160(C), pages 87-100.
    6. Yang, Haolin & Schell, Kristen R., 2022. "GHTnet: Tri-Branch deep learning network for real-time electricity price forecasting," Energy, Elsevier, vol. 238(PC).
    7. Lin, Yu & Lu, Qin & Tan, Bin & Yu, Yuanyuan, 2022. "Forecasting energy prices using a novel hybrid model with variational mode decomposition," Energy, Elsevier, vol. 246(C).
    8. Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
    9. Zhang, Xiao-Han & Zhu, Qun-Xiong & He, Yan-Lin & Xu, Yuan, 2018. "A novel robust ensemble model integrated extreme learning machine with multi-activation functions for energy modeling and analysis: Application to petrochemical industry," Energy, Elsevier, vol. 162(C), pages 593-602.
    10. Yuehjen E. Shao & Yi-Shan Tsai, 2018. "Electricity Sales Forecasting Using Hybrid Autoregressive Integrated Moving Average and Soft Computing Approaches in the Absence of Explanatory Variables," Energies, MDPI, vol. 11(7), pages 1-22, July.
    11. Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).
    12. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2024. "Two-step deep learning framework with error compensation technique for short-term, half-hourly electricity price forecasting," Applied Energy, Elsevier, vol. 353(PA).
    13. Marianna B. B. Dias & George R. S. Lira & Victor M. E. Freire, 2024. "Methodology for Multi-Step Forecasting of Electricity Spot Prices Based on Neural Networks Applied to the Brazilian Energy Market," Energies, MDPI, vol. 17(8), pages 1-14, April.
    14. Zhang, Jinliang & Siya, Wang & Zhongfu, Tan & Anli, Sun, 2023. "An improved hybrid model for short term power load prediction," Energy, Elsevier, vol. 268(C).
    15. Cai, Yi & Tang, Zhenpeng & Chen, Ying, 2024. "Can real-time investor sentiment help predict the high-frequency stock returns? Evidence from a mixed-frequency-rolling decomposition forecasting method," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    16. Han, Youhua & Liu, Yang & Lu, Shixiang & Basalike, Pie & Zhang, Jili, 2021. "Electrical performance and power prediction of a roll-bond photovoltaic thermal array under dewing and frosting conditions," Energy, Elsevier, vol. 237(C).
    17. Wang, Jun & Cao, Junxing & Yuan, Shan & Cheng, Ming, 2021. "Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network," Energy, Elsevier, vol. 233(C).
    18. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & Jesus Lopez-Sotelo & David Celeita, 2023. "An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture," Energies, MDPI, vol. 16(19), pages 1-24, September.
    19. Loizidis, Stylianos & Kyprianou, Andreas & Georghiou, George E., 2024. "Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets," Applied Energy, Elsevier, vol. 363(C).
    20. Zhang, Jinliang & Tan, Zhongfu & Wei, Yiming, 2020. "An adaptive hybrid model for short term electricity price forecasting," Applied Energy, Elsevier, vol. 258(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0287433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.