IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0286648.html
   My bibliography  Save this article

The prediction of market-level food choices by the neural valuation signal

Author

Listed:
  • Andrew Kislov
  • Anna Shestakova
  • Vadim Ushakov
  • Mario Martinez-Saito
  • Valeria Beliaeva
  • Olga Savelo
  • Aleksey Vasilchuk
  • Vasily Klucharev

Abstract

Neuroimaging studies have demonstrated the ability to use the brain activity of a group of individuals to forecast the behavior of an independent group. In the current study, we attempted to forecast aggregate choices in a popular restaurant chain. During our functional magnetic resonance imaging (fMRI) study, 22 participants were exposed to 78 photos of dishes from a new menu of a popular restaurant chain. In addition to self-reported preferences, fMRI data was extracted from an a priori domain-general and task-specific region of interest—the ventral striatum. We investigated the relationship between the neural activity and real one-year sales provided by the restaurant chain. Activity in the ventral striatum, which was defined using the task-specific region of interest, significantly correlated (r = 0.28, p = 0.01) with one-year sales. A regression analysis, which included ventral striatum activity together with the objective characteristics of the products (price and weight), behavioral, and survey data, showed R2 values of 0.33. Overall, our results confirm prior studies, which have suggested, that brain activity in the reward system of a relatively small number of individuals can forecast the aggregate choice of a larger independent group of people.

Suggested Citation

  • Andrew Kislov & Anna Shestakova & Vadim Ushakov & Mario Martinez-Saito & Valeria Beliaeva & Olga Savelo & Aleksey Vasilchuk & Vasily Klucharev, 2023. "The prediction of market-level food choices by the neural valuation signal," PLOS ONE, Public Library of Science, vol. 18(6), pages 1-18, June.
  • Handle: RePEc:plo:pone00:0286648
    DOI: 10.1371/journal.pone.0286648
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0286648
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0286648&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0286648?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Motoki, Kosuke & Suzuki, Shinsuke & Kawashima, Ryuta & Sugiura, Motoaki, 2020. "A Combination of Self-Reported Data and Social-Related Neural Measures Forecasts Viral Marketing Success on Social Media," Journal of Interactive Marketing, Elsevier, vol. 52(C), pages 99-117.
    2. Jacek P. Dmochowski & Matthew A. Bezdek & Brian P. Abelson & John S. Johnson & Eric H. Schumacher & Lucas C. Parra, 2014. "Audience preferences are predicted by temporal reliability of neural processing," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhixuan Xu & Minghui Qian, 2023. "Predicting Popularity of Viral Content in Social Media through a Temporal-Spatial Cascade Convolutional Learning Framework," Mathematics, MDPI, vol. 11(14), pages 1-29, July.
    2. Hakim, Adam & Klorfeld, Shira & Sela, Tal & Friedman, Doron & Shabat-Simon, Maytal & Levy, Dino J., 2021. "Machines learn neuromarketing: Improving preference prediction from self-reports using multiple EEG measures and machine learning," International Journal of Research in Marketing, Elsevier, vol. 38(3), pages 770-791.
    3. Wajid, Anees & Raziq, Muhammad Mustafa & Ahmed, Qazi Mohammed & Ahmad, Mansoor, 2021. "Observing viewers’ self-reported and neurophysiological responses to message appeal in social media advertisements," Journal of Retailing and Consumer Services, Elsevier, vol. 59(C).
    4. Zhiwei Xu & Siqi Liu, 2024. "Decoding consumer purchase decisions: exploring the predictive power of EEG features in online shopping environments using machine learning," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    5. Ryota Nomura & Shunichi Maruno, 2019. "Rapid serial blinks: An index of temporally increased cognitive load," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-11, December.
    6. Kate Burleson-Lesser & Flaviano Morone & Paul DeGuzman & Lucas C Parra & Hernán A Makse, 2017. "Collective Behaviour in Video Viewing: A Thermodynamic Analysis of Gaze Position," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-19, January.
    7. Shane, Scott & Drover, Will & Clingingsmith, David & Cerf, Moran, 2020. "Founder passion, neural engagement and informal investor interest in startup pitches: An fMRI study," Journal of Business Venturing, Elsevier, vol. 35(4).
    8. Wen, Xiaohan (Hannah) & Kim, Shinhye & Bowen, Melanie, 2023. "Doing good by sharing messages: An investigation of “You Share, We Donate” campaigns and how they can attain viral success," Journal of Business Research, Elsevier, vol. 156(C).
    9. Ren, Shengnan & Karimi, Sahar & Bravo Velázquez, Alberto & Cai, Jianfeng, 2023. "Endorsement effectiveness of different social media influencers: The moderating effect of brand competence and warmth," Journal of Business Research, Elsevier, vol. 156(C).
    10. Kim, Yunju & Lee, Heejun, 2024. "Consumers’ responses to metaverse ads: The roles of hedonic versus utilitarian appeal and the moderating role of need for touch," Journal of Business Research, Elsevier, vol. 179(C).
    11. Rumen Pozharliev & Matteo Angelis & Dario Rossi, 2022. "The effect of augmented reality versus traditional advertising: a comparison between neurophysiological and self-reported measures," Marketing Letters, Springer, vol. 33(1), pages 113-128, March.
    12. Rumpf, Christopher & Boronczyk, Felix & Breuer, Christoph, 2020. "Predicting consumer gaze hits: A simulation model of visual attention to dynamic marketing stimuli," Journal of Business Research, Elsevier, vol. 111(C), pages 208-217.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0286648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.