IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0286573.html
   My bibliography  Save this article

IoT based battery energy monitoring and management for electric vehicles with improved converter efficiency

Author

Listed:
  • Ravi Samikannu
  • Abid Yahya
  • Muhammad Usman Tariq
  • Muhammad Asim
  • Muhammad Babar

Abstract

Given the recent trends in the MPPT converters in PV systems, which have been researched extensively to improve design, modified closed-loop converter technology based on SoC is presented here. This paper aims to provide detailed information on the modern-day solar Maximum Power Point Tracking (MPPT) controller and Battery Management System (BMS). Most MPPT controller examination researched in the past is suitable only for fixed-rated battery capacity, which limits the converter capability and applications. The proposed paper uses the distributed energy management control technique to dispatch multi-battery charging based on the State of Charge (SoC). The converter construction is modified here as per the prerequisite of the model. The system hardware is developed and tested using Atmega2560 low power RISC based high-performance microcontroller. The batteries’ SoC level and State of Health (SoH) are calculated using embedded sensors and communication platforms through the IoT platform and Global System Monitoring (GSM) technology. The GSM and IoT technology ensure that the different batteries are monitored periodically, and any irregularities are immediately addressed through the distributed energy management control technique. This ensures a safe, reliable, and effective charging of multiple batteries with increased accuracy, thereby maximizing battery life and reducing operational costs.

Suggested Citation

  • Ravi Samikannu & Abid Yahya & Muhammad Usman Tariq & Muhammad Asim & Muhammad Babar, 2023. "IoT based battery energy monitoring and management for electric vehicles with improved converter efficiency," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-19, October.
  • Handle: RePEc:plo:pone00:0286573
    DOI: 10.1371/journal.pone.0286573
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0286573
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0286573&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0286573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Fangdan & Xing, Yinjiao & Jiang, Jiuchun & Sun, Bingxiang & Kim, Jonghoon & Pecht, Michael, 2016. "Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 183(C), pages 513-525.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Jingwen & Chen, Chunlin, 2021. "A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries," Energy, Elsevier, vol. 229(C).
    2. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    3. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Zhang, Shuzhi & Zhang, Chen & Jiang, Shiyong & Zhang, Xiongwen, 2022. "A comparative study of different adaptive extended/unscented Kalman filters for lithium-ion battery state-of-charge estimation," Energy, Elsevier, vol. 246(C).
    5. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    6. Wang, Ya-Xiong & Chen, Zhenhang & Zhang, Wei, 2022. "Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning," Energy, Elsevier, vol. 244(PB).
    7. Bian, Chong & He, Huoliang & Yang, Shunkun, 2020. "Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 191(C).
    8. Tang, Ruoli & Zhang, Shihan & Zhang, Shangyu & Lai, Jingang & Zhang, Yan, 2023. "Semi-online parameter identification methodology for maritime power lithium batteries," Applied Energy, Elsevier, vol. 339(C).
    9. Karimi, Danial & Behi, Hamidreza & Berecibar, Maitane & Van Mierlo, Joeri, 2023. "A comprehensive coupled 0D-ECM to 3D-CFD thermal model for heat pipe assisted-air cooling thermal management system under fast charge and discharge," Applied Energy, Elsevier, vol. 339(C).
    10. Ali, Dilawer & de Castro, Ricardo & Ehsani, Reza & Vougioukas, Stavros & Wei, Peng, 2025. "Unlocking the potential of electric and hybrid tractors via sensitivity and techno-economic analysis," Applied Energy, Elsevier, vol. 377(PC).
    11. Kim, Minho & Chun, Huiyong & Kim, Jungsoo & Kim, Kwangrae & Yu, Jungwook & Kim, Taegyun & Han, Soohee, 2019. "Data-efficient parameter identification of electrochemical lithium-ion battery model using deep Bayesian harmony search," Applied Energy, Elsevier, vol. 254(C).
    12. Renos Rotas & Petros Iliadis & Nikos Nikolopoulos & Ananias Tomboulides & Elias Kosmatopoulos, 2022. "Dynamic Simulation and Performance Enhancement Analysis of a Renewable Driven Trigeneration System," Energies, MDPI, vol. 15(10), pages 1-27, May.
    13. Jie Xing & Peng Wu, 2021. "State of Charge Estimation of Lithium-Ion Battery Based on Improved Adaptive Unscented Kalman Filter," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    14. Da Li & Lu Liu & Chuanxu Yue & Xiaojin Gao & Yunhai Zhu, 2025. "Real-Time Estimation of the State of Charge of Lithium Batteries Under a Wide Temperature Range," Energies, MDPI, vol. 18(7), pages 1-19, April.
    15. Tang, Ruoli & Zhang, Shangyu & Zhang, Shihan & Zhang, Yan & Lai, Jingang, 2023. "Parameter identification for lithium batteries: Model variable-coupling analysis and a novel cooperatively coevolving identification algorithm," Energy, Elsevier, vol. 263(PB).
    16. Chaoran Li & Fei Xiao & Yaxiang Fan, 2019. "An Approach to State of Charge Estimation of Lithium-Ion Batteries Based on Recurrent Neural Networks with Gated Recurrent Unit," Energies, MDPI, vol. 12(9), pages 1-22, April.
    17. Fan, Guodong & Li, Xiaoyu & Zhang, Ruigang, 2021. "Global Sensitivity Analysis on Temperature-Dependent Parameters of A Reduced-Order Electrochemical Model And Robust State-of-Charge Estimation at Different Temperatures," Energy, Elsevier, vol. 223(C).
    18. Ni, Zichuan & Xiu, Xianchao & Yang, Ying, 2022. "Towards efficient state of charge estimation of lithium-ion batteries using canonical correlation analysis," Energy, Elsevier, vol. 254(PC).
    19. Li, Da & Deng, Junjun & Zhang, Zhaosheng & Liu, Peng & Wang, Zhenpo, 2023. "Multi-dimension statistical analysis and selection of safety-representing features for battery pack in real-world electric vehicles," Applied Energy, Elsevier, vol. 343(C).
    20. Deng Ma & Kai Gao & Yutao Mu & Ziqi Wei & Ronghua Du, 2022. "An Adaptive Tracking-Extended Kalman Filter for SOC Estimation of Batteries with Model Uncertainty and Sensor Error," Energies, MDPI, vol. 15(10), pages 1-18, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0286573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.