IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0285575.html
   My bibliography  Save this article

Efficient keystone species identification strategy based on tabu search

Author

Listed:
  • Chuanjin Fan
  • Donghui Zhu
  • Tongtong Zhang
  • Ruijia Wu

Abstract

As species extinction accelerates globally and biodiversity declines dramatically, identifying keystone species becomes an effective way to conserve biodiversity. In traditional approaches, it is considered that the extinction of species with high centrality poses the greatest threat to secondary extinction. However, the indirect effect, which is equally important as the local and direct effects, is not included. Here, we propose an optimized disintegration strategy model for quantitative food webs and introduced tabu search, a metaheuristic optimization algorithm, to identify keystone species. Topological simulations are used to record secondary extinctions during species removal and secondary extinction areas, as well as to evaluate food web robustness. The effectiveness of the proposed strategy is also validated by comparing it with traditional methods. Results of our experiments demonstrate that our strategy can optimize the effect of food web disintegration and identify the species whose extinction is most destructive to the food web through global search. The algorithm provides an innovative and efficient way for further development of keystone species identification in the ecosystem.

Suggested Citation

  • Chuanjin Fan & Donghui Zhu & Tongtong Zhang & Ruijia Wu, 2023. "Efficient keystone species identification strategy based on tabu search," PLOS ONE, Public Library of Science, vol. 18(5), pages 1-19, May.
  • Handle: RePEc:plo:pone00:0285575
    DOI: 10.1371/journal.pone.0285575
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285575
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0285575&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0285575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fath, Brian D. & Scharler, Ursula M. & Ulanowicz, Robert E. & Hannon, Bruce, 2007. "Ecological network analysis: network construction," Ecological Modelling, Elsevier, vol. 208(1), pages 49-55.
    2. Sagar Sahasrabudhe & Adilson E. Motter, 2011. "Rescuing ecosystems from extinction cascades through compensatory perturbations," Nature Communications, Nature, vol. 2(1), pages 1-8, September.
    3. Matthias Schleuning & Jochen Fründ & Oliver Schweiger & Erik Welk & Jörg Albrecht & Matthias Albrecht & Marion Beil & Gita Benadi & Nico Blüthgen & Helge Bruelheide & Katrin Böhning-Gaese & D. Matthia, 2016. "Ecological networks are more sensitive to plant than to animal extinction under climate change," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    4. José M. Montoya & Stuart L. Pimm & Ricard V. Solé, 2006. "Ecological networks and their fragility," Nature, Nature, vol. 442(7100), pages 259-264, July.
    5. Salas, Andria K. & Borrett, Stuart R., 2011. "Evidence for the dominance of indirect effects in 50 trophic ecosystem networks," Ecological Modelling, Elsevier, vol. 222(5), pages 1192-1204.
    6. Stefano Allesina & Mercedes Pascual, 2009. "Googling Food Webs: Can an Eigenvector Measure Species' Importance for Coextinctions?," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-6, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    2. Zhijun Luo & Xiaofang Yang & Songkai Luo, 2024. "Land Use Simulation and Ecological Network Construction around Poyang Lake Area in China under the Goal of Sustainable Development," Sustainability, MDPI, vol. 16(18), pages 1-24, September.
    3. Hines, David E. & Borrett, Stuart R., 2014. "A comparison of network, neighborhood, and node levels of analyses in two models of nitrogen cycling in the Cape Fear River Estuary," Ecological Modelling, Elsevier, vol. 293(C), pages 210-220.
    4. Stefano Allesina & Mercedes Pascual, 2009. "Googling Food Webs: Can an Eigenvector Measure Species' Importance for Coextinctions?," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-6, September.
    5. Dunlap, J. & Schramski, J.R., 2024. "Energy-systems accounting in industrial-natural systems; An energy analysis of a managed forest ecosystem including food web biomass dynamics," Ecological Modelling, Elsevier, vol. 488(C).
    6. Panyam, Varuneswara & Huang, Hao & Davis, Katherine & Layton, Astrid, 2019. "Bio-inspired design for robust power grid networks," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. De Montis, Andrea & Ganciu, Amedeo & Cabras, Matteo & Bardi, Antonietta & Mulas, Maurizio, 2019. "Comparative ecological network analysis: An application to Italy," Land Use Policy, Elsevier, vol. 81(C), pages 714-724.
    8. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.
    9. Zechen Wang & Zhenqin Shi & Jingeng Huo & Wenbo Zhu & Yanhui Yan & Na Ding, 2023. "Construction and Optimization of an Ecological Network in Funiu Mountain Area Based on MSPA and MCR Models, China," Land, MDPI, vol. 12(8), pages 1-13, August.
    10. Chen, Shaoqing & Chen, Bin, 2017. "Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling," Applied Energy, Elsevier, vol. 194(C), pages 774-783.
    11. Xiaolong Lin & Zongmu Yao & Xinguang Wang & Shangqi Xu & Chunjie Tian & Lei Tian, 2021. "Water-Covered Depth with the Freeze–Thaw Cycle Influences Fungal Communities on Rice Straw Decomposition," Agriculture, MDPI, vol. 11(11), pages 1-16, November.
    12. Huaylla, Claudia A. & Kuperman, Marcelo N. & Garibaldi, Lucas A., 2024. "Comparison of two statistical measures of complexity applied to ecological bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    13. Weihua Lei & Luiz G. A. Alves & Luís A. Nunes Amaral, 2022. "Forecasting the evolution of fast-changing transportation networks using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Sanghwa Lee & Julia Showalter & Ling Zhang & Gaëlle Cassin-Ross & Hatem Rouached & Wolfgang Busch, 2024. "Nutrient levels control root growth responses to high ambient temperature in plants," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Bellingeri, Michele & Cassi, Davide & Vincenzi, Simone, 2013. "Increasing the extinction risk of highly connected species causes a sharp robust-to-fragile transition in empirical food webs," Ecological Modelling, Elsevier, vol. 251(C), pages 1-8.
    18. Koo, Kyung Ah & Patten, Bernard C. & Teskey, Robert O. & Creed, Irena F., 2014. "Climate change effects on red spruce decline mitigated by reduction in air pollution within its shrinking habitat range," Ecological Modelling, Elsevier, vol. 293(C), pages 81-90.
    19. Li, Lianwei & Li, Wendy & Zou, Quan & Ma, Zhanshan (Sam), 2020. "Network analysis of the hot spring microbiome sketches out possible niche differentiations among ecological guilds," Ecological Modelling, Elsevier, vol. 431(C).
    20. Fath, Brian D. & Scharler, Ursula M. & Baird, Dan, 2013. "Dependence of network metrics on model aggregation and throughflow calculations: Demonstration using the Sylt–Rømø Bight Ecosystem," Ecological Modelling, Elsevier, vol. 252(C), pages 214-219.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0285575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.