IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i8p1529-d1208410.html
   My bibliography  Save this article

Construction and Optimization of an Ecological Network in Funiu Mountain Area Based on MSPA and MCR Models, China

Author

Listed:
  • Zechen Wang

    (College of Geography and Environmental Science, Henan University, Kaifeng 475004, China)

  • Zhenqin Shi

    (College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
    Research Center of Regional Development and Planning, Henan University, Kaifeng 475004, China
    Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Region, Henan University, Ministry of Education, Kaifeng 475004, China)

  • Jingeng Huo

    (College of Geography and Environmental Science, Henan University, Kaifeng 475004, China)

  • Wenbo Zhu

    (College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
    Research Center of Regional Development and Planning, Henan University, Kaifeng 475004, China
    Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Region, Henan University, Ministry of Education, Kaifeng 475004, China)

  • Yanhui Yan

    (College of Geography and Environmental Science, Henan University, Kaifeng 475004, China)

  • Na Ding

    (College of Geography and Environmental Science, Henan University, Kaifeng 475004, China)

Abstract

Rapid urbanization has led to a significant expansion of urban space, causing ecological problems such as fragmentation, declining landscape connectivity, and decreasing biodiversity. There is an urgent need to mitigate the conflict between urban expansion and ecological environmental protection by constructing ecological networks to help promote sustainable regional development. This study selected the Funiu Mountain area as the study area. Morphological spatial pattern analysis, the minimal cumulative resistance model, and network index evaluation were used to construct an ecological network in the study area and conduct a comparative analysis with local nature reserves. The results showed: (1) nine ecological source sites were identified, concentrated in the central and northern regions, which had a high spatial overlap with local nature reserves; (2) 34 ecological corridors were extracted, which could effectively connect all ecological source sites as well as most nature reserves; (3) 32 ecological nodes were identified, of which 20 strategic points were scattered along ecological corridors, and 12 artificial environment points were scattered in low-lying areas around nature reserves; (4) the ecological network showed a structure of central concentration and peripheral dispersion. The structural evaluation of the network indicated that it had strong integrity.

Suggested Citation

  • Zechen Wang & Zhenqin Shi & Jingeng Huo & Wenbo Zhu & Yanhui Yan & Na Ding, 2023. "Construction and Optimization of an Ecological Network in Funiu Mountain Area Based on MSPA and MCR Models, China," Land, MDPI, vol. 12(8), pages 1-13, August.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:8:p:1529-:d:1208410
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/8/1529/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/8/1529/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shihe Zhang & Quanlin Zhong & Dongliang Cheng & Chaobin Xu & Yunni Chang & Yuying Lin & Baoyin Li, 2022. "Coupling Coordination Analysis and Prediction of Landscape Ecological Risks and Ecosystem Services in the Min River Basin," Land, MDPI, vol. 11(2), pages 1-18, February.
    2. Hao Li & Hongyu Chen & Minghao Wu & Kai Zhou & Xiang Zhang & Zhicheng Liu, 2022. "A Dynamic Evaluation Method of Urban Ecological Networks Combining Graphab and the FLUS Model," Land, MDPI, vol. 11(12), pages 1-15, December.
    3. Zhenfeng Wang & Yan Liu & Xiangqun Xie & Xinke Wang & Hong Lin & Huili Xie & Xingzhao Liu, 2022. "Identifying Key Areas of Green Space for Ecological Restoration Based on Ecological Security Patterns in Fujian Province, China," Land, MDPI, vol. 11(9), pages 1-19, September.
    4. Jun Ma & Qiang Yu & Huiyuan Wang & Linzhe Yang & Ruirui Wang & Minzhe Fang, 2022. "Construction and Optimization of Wetland Landscape Ecological Network in Dongying City, China," Land, MDPI, vol. 11(8), pages 1-22, August.
    5. Caihong Yang & Huijun Guo & Xiaoyuan Huang & Yanxia Wang & Xiaona Li & Xinyuan Cui, 2022. "Ecological Network Construction of a National Park Based on MSPA and MCR Models: An Example of the Proposed National Parks of “Ailaoshan-Wuliangshan” in China," Land, MDPI, vol. 11(11), pages 1-17, October.
    6. José M. Montoya & Stuart L. Pimm & Ricard V. Solé, 2006. "Ecological networks and their fragility," Nature, Nature, vol. 442(7100), pages 259-264, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaolong Lin & Zongmu Yao & Xinguang Wang & Shangqi Xu & Chunjie Tian & Lei Tian, 2021. "Water-Covered Depth with the Freeze–Thaw Cycle Influences Fungal Communities on Rice Straw Decomposition," Agriculture, MDPI, vol. 11(11), pages 1-16, November.
    2. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Bellingeri, Michele & Cassi, Davide & Vincenzi, Simone, 2013. "Increasing the extinction risk of highly connected species causes a sharp robust-to-fragile transition in empirical food webs," Ecological Modelling, Elsevier, vol. 251(C), pages 1-8.
    5. Zhang, Yan & Wu, Tong & Song, Changsu & Hein, Lars & Shi, Faqi & Han, Mingchen & Ouyang, Zhiyun, 2022. "Influences of climate change and land use change on the interactions of ecosystem services in China’s Xijiang River Basin," Ecosystem Services, Elsevier, vol. 58(C).
    6. Saucan, Emil & Sreejith, R.P. & Vivek-Ananth, R.P. & Jost, Jürgen & Samal, Areejit, 2019. "Discrete Ricci curvatures for directed networks," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 347-360.
    7. Wang, Jin-Liang & Wu, Huai-Ning, 2011. "Stability analysis of impulsive parabolic complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 44(11), pages 1020-1034.
    8. Torres-Alruiz, Maria Daniela & Rodríguez, Diego J., 2013. "A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes," Ecological Modelling, Elsevier, vol. 250(C), pages 363-369.
    9. Shengnan Chen & Huiyan He & Rongrong Zong & Kaiwen Liu & Yutian Miao & Miaomiao Yan & Lei Xu, 2020. "Geographical Patterns of Algal Communities Associated with Different Urban Lakes in China," IJERPH, MDPI, vol. 17(3), pages 1-19, February.
    10. Yuxiang Zhao & Zishu Liu & Baofeng Zhang & Jingjie Cai & Xiangwu Yao & Meng Zhang & Ye Deng & Baolan Hu, 2023. "Inter-bacterial mutualism promoted by public goods in a system characterized by deterministic temperature variation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Hayato Goto & Hideki Takayasu & Misako Takayasu, 2017. "Estimating risk propagation between interacting firms on inter-firm complex network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-12, October.
    12. Robin Lamarche-Perrin & Sven Banisch & Eckehard Olbrich, 2016. "The Information Bottleneck Method For Optimal Prediction Of Multilevel Agent-Based Systems," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 19(01n02), pages 1-45, February.
    13. Marco Alberto Javarone & Daniele Marinazzo, 2018. "Dilution of Ferromagnets via a Random Graph-Based Strategy," Complexity, Hindawi, vol. 2018, pages 1-11, April.
    14. Canelas, Joana Viana & Pereira, Henrique Miguel, 2022. "Impacts of land-use intensity on ecosystems stability," Ecological Modelling, Elsevier, vol. 472(C).
    15. Gilboa-Freedman, Gail & Hassin, Refael, 2016. "When Markov chains meet: A continuous-time model of network evolution," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 131-138.
    16. Zimo Yang & Tao Zhou & Pak Ming Hui & Jian-Hong Ke, 2012. "Instability in Evolutionary Games," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    17. Qing Cai & Mahardhika Pratama & Sameer Alam, 2019. "Interdependency and Vulnerability of Multipartite Networks under Target Node Attacks," Complexity, Hindawi, vol. 2019, pages 1-16, November.
    18. Liang, Xinyuan & Jin, Xiaobin & He, Jie & Wang, Xiaorui & Xu, Cuilan & Qiao, Guoliang & Zhang, Xiaolin & Zhou, Yinkang, 2022. "Impacts of land management practice strategy on regional ecosystems: Enlightenment from ecological redline adjustment in Jiangsu, China," Land Use Policy, Elsevier, vol. 119(C).
    19. Savoca, S. & Grifó, G. & Panarello, G. & Albano, M. & Giacobbe, S. & Capillo, G. & Spanó, N. & Consolo, G., 2020. "Modelling prey-predator interactions in Messina beachrock pools," Ecological Modelling, Elsevier, vol. 434(C).
    20. Losapio, Gianalberto & Jordán, Ferenc & Caccianiga, Marco & Gobbi, Mauro, 2015. "Structure-dynamic relationship of plant–insect networks along a primary succession gradient on a glacier foreland," Ecological Modelling, Elsevier, vol. 314(C), pages 73-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:8:p:1529-:d:1208410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.