IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0284318.html
   My bibliography  Save this article

A framework of interpretable match results prediction in football with FIFA ratings and team formation

Author

Listed:
  • Calvin C K Yeung
  • Rory Bunker
  • Keisuke Fujii

Abstract

While forecasting football match results has long been a popular topic, a practical model for football participants, such as coaches and players, has not been considered in great detail. In this study, we propose a generalized and interpretable machine learning model framework that only requires coaches’ decisions and player quality features for forecasting. By further allowing the model to embed historical match statistics, features that consist of significant information, during the training process the model was practical and achieved both high performance and interpretability. Using five years of data (over 1,700 matches) from the English Premier League, our results show that our model was able to achieve high performance with an F1-score of 0.47, compared to the baseline betting odds prediction, which had an F1-score of 0.39. Moreover, our framework allows football teams to adapt for tactical decision-making, strength and weakness identification, formation and player selection, and transfer target validation. The framework in this study would have proven the feasibility of building a practical match result forecast framework and may serve to inspire future studies.

Suggested Citation

  • Calvin C K Yeung & Rory Bunker & Keisuke Fujii, 2023. "A framework of interpretable match results prediction in football with FIFA ratings and team formation," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-15, April.
  • Handle: RePEc:plo:pone00:0284318
    DOI: 10.1371/journal.pone.0284318
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284318
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0284318&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0284318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wheatcroft, Edward, 2021. "Forecasting football matches by predicting match statistics," LSE Research Online Documents on Economics 111495, London School of Economics and Political Science, LSE Library.
    2. M. J. Maher, 1982. "Modelling association football scores," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 36(3), pages 109-118, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holmes, Benjamin & McHale, Ian G. & Żychaluk, Kamila, 2023. "A Markov chain model for forecasting results of mixed martial arts contests," International Journal of Forecasting, Elsevier, vol. 39(2), pages 623-640.
    2. Koning, Ruud H. & Koolhaas, Michael & Renes, Gusta & Ridder, Geert, 2003. "A simulation model for football championships," European Journal of Operational Research, Elsevier, vol. 148(2), pages 268-276, July.
    3. Schwarz Wolf, 2012. "Predicting the Maximum Lead from Final Scores in Basketball: A Diffusion Model," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(4), pages 1-15, November.
    4. Csató, László, 2023. "How to avoid uncompetitive games? The importance of tie-breaking rules," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1260-1269.
    5. Stekler, H.O. & Sendor, David & Verlander, Richard, 2010. "Issues in sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
      • Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    6. Gianluca Baio & Marta Blangiardo, 2010. "Bayesian hierarchical model for the prediction of football results," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(2), pages 253-264.
    7. László Csató, 2020. "Optimal Tournament Design: Lessons From the Men’s Handball Champions League," Journal of Sports Economics, , vol. 21(8), pages 848-868, December.
    8. Buraimo, Babatunde & Forrest, David & McHale, Ian G. & Tena, J.D., 2022. "Armchair fans: Modelling audience size for televised football matches," European Journal of Operational Research, Elsevier, vol. 298(2), pages 644-655.
    9. M Wright & N Hirotsu, 2003. "The professional foul in football: Tactics and deterrents," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(3), pages 213-221, March.
    10. Dagaev Dmitry & Rudyak Vladimir Yu., 2019. "Seeding the UEFA Champions League participants: evaluation of the reforms," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(2), pages 129-140, June.
    11. Chater, Mario & Arrondel, Luc & Gayant, Jean-Pascal & Laslier, Jean-François, 2021. "Fixing match-fixing: Optimal schedules to promote competitiveness," European Journal of Operational Research, Elsevier, vol. 294(2), pages 673-683.
    12. Radu Tunaru & Ephraim Clark & Howard Viney, 2005. "An option pricing framework for valuation of football players," Review of Financial Economics, John Wiley & Sons, vol. 14(3-4), pages 281-295.
    13. Sebastián Cea & Guillermo Durán & Mario Guajardo & Denis Sauré & Joaquín Siebert & Gonzalo Zamorano, 2020. "An analytics approach to the FIFA ranking procedure and the World Cup final draw," Annals of Operations Research, Springer, vol. 286(1), pages 119-146, March.
    14. Golnaz Shahtahmassebi & Rana Moyeed, 2016. "An application of the generalized Poisson difference distribution to the Bayesian modelling of football scores," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(3), pages 260-273, August.
    15. Federico Fioravanti & Fernando Tohmé & Fernando Delbianco & Alejandro Neme, 2021. "Effort of rugby teams according to the bonus point system: a theoretical and empirical analysis," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(2), pages 447-474, June.
    16. Kharrat, Tarak & McHale, Ian G. & Peña, Javier López, 2020. "Plus–minus player ratings for soccer," European Journal of Operational Research, Elsevier, vol. 283(2), pages 726-736.
    17. Oberhofer, Harald & Philippovich, Tassilo & Winner, Hannes, 2010. "Distance matters in away games: Evidence from the German football league," Journal of Economic Psychology, Elsevier, vol. 31(2), pages 200-211, April.
    18. Leitner, Christoph & Zeileis, Achim & Hornik, Kurt, 2010. "Forecasting sports tournaments by ratings of (prob)abilities: A comparison for the EUROÂ 2008," International Journal of Forecasting, Elsevier, vol. 26(3), pages 471-481, July.
    19. Florez Mauro & Guindani Michele & Vannucci Marina, 2025. "Bayesian bivariate Conway–Maxwell–Poisson regression model for correlated count data in sports," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 21(1), pages 51-71.
    20. Wheatcroft, Edward, 2020. "A profitable model for predicting the over/under market in football," International Journal of Forecasting, Elsevier, vol. 36(3), pages 916-932.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0284318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.