IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0283655.html
   My bibliography  Save this article

A hybrid MCDM model combining Fuzzy-Delphi, AEW, BWM, and MARCOS for digital economy development comprehensive evaluation of 31 provincial level regions in China

Author

Listed:
  • Haoran Zhao
  • Yuchen Wang
  • Sen Guo

Abstract

With the deepening of a new round of technological revolution and industrial reform, digital technology has been continuously innovated and widely penetrated into various economic fields. The digital economy (DE) is gradually becoming the focus of China’s economic development planning and a new engine to enhance national strength. Evaluating the development level of DE in various regions is conducive to timely discover the shortcomings in China’s DE development, as well as provide an important basis for putting forward corresponding policy suggestions. This investigation established a hybrid multi-criteria decision making (MCDM) model for evaluating DE development of 31 provincial level regions in China ranging from 2015 to 2020. Firstly, the evaluation indicator system is established from digital infrastructure, integrated development, social benefits, innovation ability, and electronic-commerce dimensions containing 17 quantitative sub-criteria based on Fuzzy-Delphi method. Secondly, integrated weights of 17 sub-criteria from 2015 to 2020 are computed in terms of objective weights calculated by the anti-entropy weight (AEW) approach from 2015 to 2020 and subjective weights obtained via the best-worst method (BWM). Thirdly, MARCOS model is applied to evaluate the DE development degree of various regions in China ranging from 2015 to 2020. Case analysis illustrates that the DE development of Guangdong, Jiangsu, Zhejiang, and Beijing always maintain in the top four from 2015 to 2020, while the southwest and northwest regions in China are obviously fall behind others. And the DE development degree of various regions is primarily affected under the integrated development performance, innovation ability performance, and social benefits performance. Therefore, the backward regions should emphasize the development of software industry and information technology industry. The robustness of the proposed MCDM model combining Fuzzy-Delphi, AEW, BWM and MARCOS is discussed employing three similarity coefficients of rankings. And it is verified that the proposed MCDM model has superior robustness and validity in evaluating DE development.

Suggested Citation

  • Haoran Zhao & Yuchen Wang & Sen Guo, 2023. "A hybrid MCDM model combining Fuzzy-Delphi, AEW, BWM, and MARCOS for digital economy development comprehensive evaluation of 31 provincial level regions in China," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-31, April.
  • Handle: RePEc:plo:pone00:0283655
    DOI: 10.1371/journal.pone.0283655
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283655
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0283655&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0283655?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Comprehensive Performance Assessment on Various Battery Energy Storage Systems," Energies, MDPI, vol. 11(10), pages 1-26, October.
    2. Roman Vavrek, 2019. "Evaluation of the Impact of Selected Weighting Methods on the Results of the TOPSIS Technique," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1821-1843, November.
    3. Bartłomiej Kizielewicz & Jarosław Wątróbski & Wojciech Sałabun, 2020. "Identification of Relevant Criteria Set in the MCDA Process—Wind Farm Location Case Study," Energies, MDPI, vol. 13(24), pages 1-40, December.
    4. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Huiru & Li, Bingkang & Lu, Hao & Wang, Xuejie & Li, Hongze & Guo, Sen & Xue, Wanlei & Wang, Yuwei, 2022. "Economy-environment-energy performance evaluation of CCHP microgrid system: A hybrid multi-criteria decision-making method," Energy, Elsevier, vol. 240(C).
    2. Xu, Ru-Yu & Wang, Ke-Liang & Miao, Zhuang, 2024. "The impact of digital technology innovation on green total-factor energy efficiency in China: Does economic development matter?," Energy Policy, Elsevier, vol. 194(C).
    3. Tianchu Feng & Andrea Appolloni & Jiayu Chen, 2024. "How does corporate digital transformation affect carbon productivity? Evidence from Chinese listed companies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(12), pages 31425-31445, December.
    4. Junhong Qu & Xiaoli Hao, 2022. "Digital Economy, Financial Development, and Energy Poverty Based on Mediating Effects and a Spatial Autocorrelation Model," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    5. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    6. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    7. Chwiłkowska-Kubala, Anna & Cyfert, Szymon & Malewska, Kamila & Mierzejewska, Katarzyna & Szumowski, Witold, 2023. "The impact of resources on digital transformation in energy sector companies. The role of readiness for digital transformation," Technology in Society, Elsevier, vol. 74(C).
    8. Fuming Deng & Lu Cai & Xiaolei Ma, 2024. "Does digital transformation restrict the carbon emission intensity of enterprises? Evidence from listed manufacturing enterprises in China," Natural Resources Forum, Blackwell Publishing, vol. 48(2), pages 364-384, May.
    9. Axenbeck, Janna & Niebel, Thomas, 2021. "Climate Protection Potentials of Digitalized Production Processes: Microeconometric Evidence," 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world 238007, International Telecommunications Society (ITS).
    10. Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    11. Ana Salomé García-Muñiz & María Rosalía Vicente, 2021. "The Effects of Informational Feedback on the Energy Consumption of Online Services: Some Evidence for the European Union," Energies, MDPI, vol. 14(10), pages 1-14, May.
    12. Zhipeng Yu & Yi Liu & Taihua Yan & Ming Zhang, 2024. "Carbon emission efficiency in the age of digital economy: New insights on green technology progress and industrial structure distortion," Business Strategy and the Environment, Wiley Blackwell, vol. 33(5), pages 4039-4057, July.
    13. Leslie Quitzow & Friederike Rohde, 2022. "Imagining the smart city through smart grids? Urban energy futures between technological experimentation and the imagined low-carbon city," Urban Studies, Urban Studies Journal Limited, vol. 59(2), pages 341-359, February.
    14. Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
    15. Rongwu Zhang & Wenqiang Fu & Yingxu Kuang, 2022. "Can Digital Economy Promote Energy Conservation and Emission Reduction in Heavily Polluting Enterprises? Empirical Evidence from China," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
    16. Huang, Chenchen & Lin, Boqiang, 2024. "Digital economy solutions towards carbon neutrality: The critical role of energy efficiency and energy structure transformation," Energy, Elsevier, vol. 306(C).
    17. Bacha, Radia & Gasmi, Farid, 2022. "The broadband diffusion process and its determinants in Algeria: A simultaneous estimation," TSE Working Papers 22-1309, Toulouse School of Economics (TSE).
    18. Luyang Tang & Bangke Lu & Tianhai Tian, 2023. "The Effect of Input Digitalization on Carbon Emission Intensity: An Empirical Analysis Based on China’s Manufacturing," IJERPH, MDPI, vol. 20(4), pages 1-22, February.
    19. Xiujin Guo & Zhengming Wang, 2024. "How does the digital economy affect the green development of China’s industry?," PLOS ONE, Public Library of Science, vol. 19(9), pages 1-21, September.
    20. Quitzow, Leslie & Rohde, Friederike, 2022. "Imagining the smart city through smart grids? Urban energy futures between technological experimentation and the imagined low-carbon city," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 59(2), pages 341-359.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0283655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.