IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0283618.html
   My bibliography  Save this article

Data analysis for COVID-19 deaths using a novel statistical model: Simulation and fuzzy application

Author

Listed:
  • El-Sayed A El-Sherpieny
  • Ehab M Almetwally
  • Abdisalam Hassan Muse
  • Eslam Hussam

Abstract

This paper provides a novel model that is more relevant than the well-known conventional distributions, which stand for the two-parameter distribution of the lifetime modified Kies Topp–Leone (MKTL) model. Compared to the current distributions, the most recent one gives an unusually varied collection of probability functions. The density and hazard rate functions exhibit features, demonstrating that the model is flexible to several kinds of data. Multiple statistical characteristics have been obtained. To estimate the parameters of the MKTL model, we employed various estimation techniques, including maximum likelihood estimators (MLEs) and the Bayesian estimation approach. We compared the traditional reliability function model to the fuzzy reliability function model within the reliability analysis framework. A complete Monte Carlo simulation analysis is conducted to determine the precision of these estimators. The suggested model outperforms competing models in real-world applications and may be chosen as an enhanced model for building a statistical model for the COVID-19 data and other data sets with similar features.

Suggested Citation

  • El-Sayed A El-Sherpieny & Ehab M Almetwally & Abdisalam Hassan Muse & Eslam Hussam, 2023. "Data analysis for COVID-19 deaths using a novel statistical model: Simulation and fuzzy application," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-17, April.
  • Handle: RePEc:plo:pone00:0283618
    DOI: 10.1371/journal.pone.0283618
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283618
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0283618&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0283618?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lalmuanawma, Samuel & Hussain, Jamal & Chhakchhuak, Lalrinfela, 2020. "Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortiz-Barrios, Miguel & Arias-Fonseca, Sebastián & Ishizaka, Alessio & Barbati, Maria & Avendaño-Collante, Betty & Navarro-Jiménez, Eduardo, 2023. "Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study," Journal of Business Research, Elsevier, vol. 160(C).
    2. Marcel Lucas Chee & Marcus Eng Hock Ong & Fahad Javaid Siddiqui & Zhongheng Zhang & Shir Lynn Lim & Andrew Fu Wah Ho & Nan Liu, 2021. "Artificial Intelligence Applications for COVID-19 in Intensive Care and Emergency Settings: A Systematic Review," IJERPH, MDPI, vol. 18(9), pages 1-15, April.
    3. Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
    4. Sini V. Pillai & Ranjith S. Kumar, 2021. "The role of data-driven artificial intelligence on COVID-19 disease management in public sphere: a review," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 48(4), pages 375-389, December.
    5. Faizeh Hatami & Shi Chen & Rajib Paul & Jean-Claude Thill, 2022. "Simulating and Forecasting the COVID-19 Spread in a U.S. Metropolitan Region with a Spatial SEIR Model," IJERPH, MDPI, vol. 19(23), pages 1-16, November.
    6. Wang, Lingxiao & Hare, Brian M. & Zhou, Kai & Stöcker, Horst & Scholten, Olaf, 2023. "Identifying lightning structures via machine learning," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    7. Mohammad Reza Davahli & Krzysztof Fiok & Waldemar Karwowski & Awad M. Aljuaid & Redha Taiar, 2021. "Predicting the Dynamics of the COVID-19 Pandemic in the United States Using Graph Theory-Based Neural Networks," IJERPH, MDPI, vol. 18(7), pages 1-12, April.
    8. Manuel Sánchez-Montañés & Pablo Rodríguez-Belenguer & Antonio J. Serrano-López & Emilio Soria-Olivas & Yasser Alakhdar-Mohmara, 2020. "Machine Learning for Mortality Analysis in Patients with COVID-19," IJERPH, MDPI, vol. 17(22), pages 1-20, November.
    9. Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.
    10. Mario A Quiroz-Juárez & Armando Torres-Gómez & Irma Hoyo-Ulloa & Roberto de J León-Montiel & Alfred B U’Ren, 2021. "Identification of high-risk COVID-19 patients using machine learning," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-21, September.
    11. Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2023. "Which COVID-19 information really impacts stock markets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 84(C).
    12. Anil Babu Payedimarri & Diego Concina & Luigi Portinale & Massimo Canonico & Deborah Seys & Kris Vanhaecht & Massimiliano Panella, 2021. "Prediction Models for Public Health Containment Measures on COVID-19 Using Artificial Intelligence and Machine Learning: A Systematic Review," IJERPH, MDPI, vol. 18(9), pages 1-11, April.
    13. Anuj Kumar & Purvi Pujari & Nimit Gupta, 2021. "Artificial Intelligence: Technology 4.0 as a solution for healthcare workers during COVID-19 pandemic," Acta Universitatis Bohemiae Meridionalis, University of South Bohemia in Ceske Budejovice, Faculty of Economics, vol. 24(1), pages 19-35.
    14. Yan, Tao & Wong, Pak Kin & Ren, Hao & Wang, Huaqiao & Wang, Jiangtao & Li, Yang, 2020. "Automatic distinction between COVID-19 and common pneumonia using multi-scale convolutional neural network on chest CT scans," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    15. Sharov, Konstantin S., 2020. "Creating and applying SIR modified compartmental model for calculation of COVID-19 lockdown efficiency," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    16. Yao, Haitang & Liu, Wei & Wu, Chia-Huei & Yuan, Yu-Hsi, 2022. "The imprinting effect of SARS experience on the fear of COVID-19: The role of AI and big data," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    17. Wajdi Aljedaani & Eysha Saad & Furqan Rustam & Isabel de la Torre Díez & Imran Ashraf, 2022. "Role of Artificial Intelligence for Analysis of COVID-19 Vaccination-Related Tweets: Opportunities, Challenges, and Future Trends," Mathematics, MDPI, vol. 10(17), pages 1-33, September.
    18. Miraj Ahmed Bhuiyan & Tiziana Crovella & Annarita Paiano & Helena Alves, 2021. "A Review of Research on Tourism Industry, Economic Crisis and Mitigation Process of the Loss: Analysis on Pre, During and Post Pandemic Situation," Sustainability, MDPI, vol. 13(18), pages 1-27, September.
    19. Jonathan S. Talahua & Jorge Buele & P. Calvopiña & José Varela-Aldás, 2021. "Facial Recognition System for People with and without Face Mask in Times of the COVID-19 Pandemic," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    20. Sonsare, Pravinkumar M. & C, Gunavathi, 2021. "Cascading 1D-Convnet Bidirectional Long Short Term Memory Network with Modified COCOB Optimizer: A Novel Approach for Protein Secondary Structure Prediction," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0283618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.