IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics0960077920304562.html
   My bibliography  Save this article

Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review

Author

Listed:
  • Lalmuanawma, Samuel
  • Hussain, Jamal
  • Chhakchhuak, Lalrinfela

Abstract

During the recent global urgency, scientists, clinicians, and healthcare experts around the globe keep on searching for a new technology to support in tackling the Covid-19 pandemic. The evidence of Machine Learning (ML) and Artificial Intelligence (AI) application on the previous epidemic encourage researchers by giving a new angle to fight against the novel Coronavirus outbreak. This paper aims to comprehensively review the role of AI and ML as one significant method in the arena of screening, predicting, forecasting, contact tracing, and drug development for SARS-CoV-2 and its related epidemic.

Suggested Citation

  • Lalmuanawma, Samuel & Hussain, Jamal & Chhakchhuak, Lalrinfela, 2020. "Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304562
    DOI: 10.1016/j.chaos.2020.110059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920304562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    2. Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    3. Ribeiro, Matheus Henrique Dal Molin & da Silva, Ramon Gomes & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crokidakis, Nuno, 2020. "COVID-19 spreading in Rio de Janeiro, Brazil: Do the policies of social isolation really work?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    2. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Ho, Andrew Fu Wah & Liu, Nan & Ong, Marcus Eng Hock & Cheong, Kang Hao, 2022. "A deep learning architecture for forecasting daily emergency department visits with acuity levels," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    3. Rafael Pérez Abreu C. & Samantha Estrada & Héctor de-la-Torre-Gutiérrez, 2021. "A Two-Step Polynomial and Nonlinear Growth Approach for Modeling COVID-19 Cases in Mexico," Mathematics, MDPI, vol. 9(18), pages 1-18, September.
    4. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    5. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Iloanusi, Ogechukwu & Ross, Arun, 2021. "Leveraging weather data for forecasting cases-to-mortality rates due to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Medeiros, Marcelo C. & Street, Alexandre & Valladão, Davi & Vasconcelos, Gabriel & Zilberman, Eduardo, 2022. "Short-term Covid-19 forecast for latecomers," International Journal of Forecasting, Elsevier, vol. 38(2), pages 467-488.
    8. Nikola Anđelić & Sandi Baressi Šegota & Ivan Lorencin & Zdravko Jurilj & Tijana Šušteršič & Anđela Blagojević & Alen Protić & Tomislav Ćabov & Nenad Filipović & Zlatan Car, 2021. "Estimation of COVID-19 Epidemiology Curve of the United States Using Genetic Programming Algorithm," IJERPH, MDPI, vol. 18(3), pages 1-26, January.
    9. Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Francisco Tarcísio Alves Júnior & Mariá Cristina Vasconcelos Nascimento, 2021. "On Comparing Cross-Validated Forecasting Models with a Novel Fuzzy-TOPSIS Metric: A COVID-19 Case Study," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    10. James, Nick & Menzies, Max & Chan, Jennifer, 2021. "Changes to the extreme and erratic behaviour of cryptocurrencies during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    11. James, Nick, 2021. "Dynamics, behaviours, and anomaly persistence in cryptocurrencies and equities surrounding COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    12. Kırbaş, İsmail & Sözen, Adnan & Tuncer, Azim Doğuş & Kazancıoğlu, Fikret Şinasi, 2020. "Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    13. Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
    14. Zeroual, Abdelhafid & Harrou, Fouzi & Dairi, Abdelkader & Sun, Ying, 2020. "Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    15. Çaparoğlu, Ömer Faruk & Ok, Yeşim & Tutam, Mahmut, 2021. "To restrict or not to restrict? Use of artificial neural network to evaluate the effectiveness of mitigation policies: A case study of Turkey," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    16. Perone, G., 2020. "Comparison of ARIMA, ETS, NNAR and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/18, HEDG, c/o Department of Economics, University of York.
    17. Sergio Contreras-Espinoza & Francisco Novoa-Muñoz & Szabolcs Blazsek & Pedro Vidal & Christian Caamaño-Carrillo, 2022. "COVID-19 Active Case Forecasts in Latin American Countries Using Score-Driven Models," Mathematics, MDPI, vol. 11(1), pages 1-17, December.
    18. Mandal, Manotosh & Jana, Soovoojeet & Nandi, Swapan Kumar & Khatua, Anupam & Adak, Sayani & Kar, T.K., 2020. "A model based study on the dynamics of COVID-19: Prediction and control," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    19. Rohitash Chandra & Yixuan He, 2021. "Bayesian neural networks for stock price forecasting before and during COVID-19 pandemic," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-32, July.
    20. Raydonal Ospina & João A. M. Gondim & Víctor Leiva & Cecilia Castro, 2023. "An Overview of Forecast Analysis with ARIMA Models during the COVID-19 Pandemic: Methodology and Case Study in Brazil," Mathematics, MDPI, vol. 11(14), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.