Identification of high-risk COVID-19 patients using machine learning
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0257234
Download full text from publisher
References listed on IDEAS
- Avila-Ponce de León, Ugo & Pérez, Ángel G.C. & Avila-Vales, Eric, 2020. "An SEIARD epidemic model for COVID-19 in Mexico: Mathematical analysis and state-level forecast," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Mohamed Abd Elaziz & Khalid M Hosny & Ahmad Salah & Mohamed M Darwish & Songfeng Lu & Ahmed T Sahlol, 2020. "New machine learning method for image-based diagnosis of COVID-19," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-18, June.
- Lalmuanawma, Samuel & Hussain, Jamal & Chhakchhuak, Lalrinfela, 2020. "Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
- Faizeh Hatami & Shi Chen & Rajib Paul & Jean-Claude Thill, 2022. "Simulating and Forecasting the COVID-19 Spread in a U.S. Metropolitan Region with a Spatial SEIR Model," IJERPH, MDPI, vol. 19(23), pages 1-16, November.
- de León, Ugo Avila-Ponce & Avila-Vales, Eric & Huang, Kuan-lin, 2022. "Modeling COVID-19 dynamic using a two-strain model with vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- Mohammad Reza Davahli & Krzysztof Fiok & Waldemar Karwowski & Awad M. Aljuaid & Redha Taiar, 2021. "Predicting the Dynamics of the COVID-19 Pandemic in the United States Using Graph Theory-Based Neural Networks," IJERPH, MDPI, vol. 18(7), pages 1-12, April.
- Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.
- Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2023. "Which COVID-19 information really impacts stock markets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 84(C).
- Saqib Ali Nawaz & Jingbing Li & Uzair Aslam Bhatti & Sibghat Ullah Bazai & Asmat Zafar & Mughair Aslam Bhatti & Anum Mehmood & Qurat ul Ain & Muhammad Usman Shoukat, 2021. "A hybrid approach to forecast the COVID-19 epidemic trend," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-16, October.
- Mohamed Abd Elaziz & Laith Abualigah & Dalia Yousri & Diego Oliva & Mohammed A. A. Al-Qaness & Mohammad H. Nadimi-Shahraki & Ahmed A. Ewees & Songfeng Lu & Rehab Ali Ibrahim, 2021. "Boosting Atomic Orbit Search Using Dynamic-Based Learning for Feature Selection," Mathematics, MDPI, vol. 9(21), pages 1-17, November.
- Yao, Haitang & Liu, Wei & Wu, Chia-Huei & Yuan, Yu-Hsi, 2022. "The imprinting effect of SARS experience on the fear of COVID-19: The role of AI and big data," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
- Wajdi Aljedaani & Eysha Saad & Furqan Rustam & Isabel de la Torre Díez & Imran Ashraf, 2022. "Role of Artificial Intelligence for Analysis of COVID-19 Vaccination-Related Tweets: Opportunities, Challenges, and Future Trends," Mathematics, MDPI, vol. 10(17), pages 1-33, September.
- Karime Chahuán-Jiménez & Rolando Rubilar-Torrealba & Hanns de la Fuente-Mella, 2021. "Market Openness and Its Relationship to Connecting Markets Due to COVID-19," Sustainability, MDPI, vol. 13(19), pages 1-12, October.
- Yingying Liao & Weiguo Zhao & Liying Wang, 2021. "Improved Manta Ray Foraging Optimization for Parameters Identification of Magnetorheological Dampers," Mathematics, MDPI, vol. 9(18), pages 1-38, September.
- Ortiz-Barrios, Miguel & Arias-Fonseca, Sebastián & Ishizaka, Alessio & Barbati, Maria & Avendaño-Collante, Betty & Navarro-Jiménez, Eduardo, 2023. "Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study," Journal of Business Research, Elsevier, vol. 160(C).
- Marcel Lucas Chee & Marcus Eng Hock Ong & Fahad Javaid Siddiqui & Zhongheng Zhang & Shir Lynn Lim & Andrew Fu Wah Ho & Nan Liu, 2021. "Artificial Intelligence Applications for COVID-19 in Intensive Care and Emergency Settings: A Systematic Review," IJERPH, MDPI, vol. 18(9), pages 1-15, April.
- Aguilar-Canto, Fernando Javier & de León, Ugo Avila-Ponce & Avila-Vales, Eric, 2022. "Sensitivity theorems of a model of multiple imperfect vaccines for COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
- Sini V. Pillai & Ranjith S. Kumar, 2021. "The role of data-driven artificial intelligence on COVID-19 disease management in public sphere: a review," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 48(4), pages 375-389, December.
- Prem Kumar, R. & Santra, P.K. & Mahapatra, G.S., 2023. "Global stability and analysing the sensitivity of parameters of a multiple-susceptible population model of SARS-CoV-2 emphasising vaccination drive," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 741-766.
- Wang, Lingxiao & Hare, Brian M. & Zhou, Kai & Stöcker, Horst & Scholten, Olaf, 2023. "Identifying lightning structures via machine learning," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
- Manuel Sánchez-Montañés & Pablo Rodríguez-Belenguer & Antonio J. Serrano-López & Emilio Soria-Olivas & Yasser Alakhdar-Mohmara, 2020. "Machine Learning for Mortality Analysis in Patients with COVID-19," IJERPH, MDPI, vol. 17(22), pages 1-20, November.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0257234. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.