IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0282084.html
   My bibliography  Save this article

Machine learning estimation of crude oil viscosity as function of API, temperature, and oil composition: Model optimization and design space

Author

Listed:
  • Daihong Li
  • Xiaoyu Zhang
  • Qian Kang

Abstract

Measurement of viscosity of crude oil is critical for reservoir simulators. Computational modeling is a useful tool for correlation of crude oil viscosity to reservoir conditions such as pressure, temperature, and fluid compositions. In this work, multiple distinct models are applied to the available dataset to predict heavy-oil viscosity as function of a variety of process parameters and oil properties. The computational techniques utilized in this work are Decision Tree (DT), MLP, and GRNN which were utilized in estimation of heavy crude oil samples collected from middle eastern oil fields. For the estimation of viscosity, the firefly algorithm (FA) was employed to optimize the hyper-parameters of the machine learning models. The RMSE error rates for the final models of DT, MLP, and GRNN are 40.52, 25.08, and 30.83, respectively. Also, the R2-scores are 0.921, 0. 978, and 0.933, respectively. Based on this and other criteria, MLP is chosen as the best model for this study in estimating the values of crude oil viscosity.

Suggested Citation

  • Daihong Li & Xiaoyu Zhang & Qian Kang, 2023. "Machine learning estimation of crude oil viscosity as function of API, temperature, and oil composition: Model optimization and design space," PLOS ONE, Public Library of Science, vol. 18(2), pages 1-14, February.
  • Handle: RePEc:plo:pone00:0282084
    DOI: 10.1371/journal.pone.0282084
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282084
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0282084&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0282084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peng, Lu & Wang, Lin & Xia, De & Gao, Qinglu, 2022. "Effective energy consumption forecasting using empirical wavelet transform and long short-term memory," Energy, Elsevier, vol. 238(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Jianguo & Xu, Zhongtian, 2023. "Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China," Renewable Energy, Elsevier, vol. 202(C), pages 1110-1137.
    2. Cheng, Min-Yuan & Vu, Quoc-Tuan, 2024. "Bio-inspired bidirectional deep machine learning for real-time energy consumption forecasting and management," Energy, Elsevier, vol. 302(C).
    3. Wuyue An & Lin Wang & Dongfeng Zhang, 2023. "Comprehensive commodity price forecasting framework using text mining methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1865-1888, November.
    4. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    5. Gonçalves, Rui & Ribeiro, Vitor Miguel & Pereira, Fernando Lobo, 2023. "Variable Split Convolutional Attention: A novel Deep Learning model applied to the household electric power consumption," Energy, Elsevier, vol. 274(C).
    6. Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
    7. Xinyu Wang & Liang Zhao & Ning Zhang & Liu Feng & Haibo Lin, 2022. "Stability of China's Stock Market: Measure and Forecast by Ricci Curvature on Network," Papers 2204.06692, arXiv.org.
    8. Ejigu Tefera Habtemariam & Kula Kekeba & María Martínez-Ballesteros & Francisco Martínez-Álvarez, 2023. "A Bayesian Optimization-Based LSTM Model for Wind Power Forecasting in the Adama District, Ethiopia," Energies, MDPI, vol. 16(5), pages 1-22, February.
    9. Paweł Pełka, 2023. "Analysis and Forecasting of Monthly Electricity Demand Time Series Using Pattern-Based Statistical Methods," Energies, MDPI, vol. 16(2), pages 1-22, January.
    10. Haizhou Fang & Hongwei Tan & Ningfang Dai & Zhaohui Liu & Risto Kosonen, 2023. "Hourly Building Energy Consumption Prediction Using a Training Sample Selection Method Based on Key Feature Search," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    11. Chatum Sankalpa & Somsak Kittipiyakul & Seksan Laitrakun, 2022. "Forecasting Short-Term Electricity Load Using Validated Ensemble Learning," Energies, MDPI, vol. 15(22), pages 1-30, November.
    12. Afzal, Sadegh & Ziapour, Behrooz M. & Shokri, Afshar & Shakibi, Hamid & Sobhani, Behnam, 2023. "Building energy consumption prediction using multilayer perceptron neural network-assisted models; comparison of different optimization algorithms," Energy, Elsevier, vol. 282(C).
    13. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & Jesus Lopez-Sotelo & David Celeita, 2023. "An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture," Energies, MDPI, vol. 16(19), pages 1-24, September.
    14. Grossman, Irina & Wilson, Tom & Temple, Jeromey, 2023. "Forecasting small area populations with long short-term memory networks," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    15. Wuyue An & Lin Wang & Yu‐Rong Zeng, 2023. "Text‐based soybean futures price forecasting: A two‐stage deep learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 312-330, March.
    16. Muhammad Jawad Sajid & Zhang Yu & Syed Abdul Rehman, 2022. "The Coal, Petroleum, and Gas Embedded in the Sectoral Demand-and-Supply Chain: Evidence from China," Sustainability, MDPI, vol. 14(3), pages 1-18, February.
    17. Salma Hamad Almuhaini & Nahid Sultana, 2023. "Bayesian-Optimization-Based Long Short-Term Memory (LSTM) Super Learner Approach for Modeling Long-Term Electricity Consumption," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    18. Keshab Raj Dahal & Nawa Raj Pokhrel & Santosh Gaire & Sharad Mahatara & Rajendra P Joshi & Ankrit Gupta & Huta R Banjade & Jeorge Joshi, 2023. "A comparative study on effect of news sentiment on stock price prediction with deep learning architecture," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-19, April.
    19. Shucheng Lin & Yue Wang & Haocheng Wei & Xiaoyi Wang & Zhong Wang, 2025. "Hybrid Method for Oil Price Prediction Based on Feature Selection and XGBOOST-LSTM," Energies, MDPI, vol. 18(9), pages 1-27, April.
    20. Alan K. Karaev & Oksana S. Gorlova & Vadim V. Ponkratov & Marina L. Sedova & Nataliya S. Shmigol & Margarita L. Vasyunina, 2022. "A Comparative Analysis of the Choice of Mother Wavelet Functions Affecting the Accuracy of Forecasts of Daily Balances in the Treasury Single Account," Economies, MDPI, vol. 10(9), pages 1-27, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0282084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.