IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0275430.html
   My bibliography  Save this article

Classical and Bayesian estimation for type-I extended-F family with an actuarial application

Author

Listed:
  • Nada M Alfaer
  • Sarah A Bandar
  • Omid Kharazmi
  • Hazem Al-Mofleh
  • Zubair Ahmad
  • Ahmed Z Afify

Abstract

In this work, a new flexible class, called the type-I extended-F family, is proposed. A special sub-model of the proposed class, called type-I extended-Weibull (TIEx-W) distribution, is explored in detail. Basic properties of the TIEx-W distribution are provided. The parameters of the TIEx-W distribution are obtained by eight classical methods of estimation. The performance of these estimators is explored using Monte Carlo simulation results for small and large samples. Besides, the Bayesian estimation of the model parameters under different loss functions for the real data set is also provided. The importance and flexibility of the TIEx-W model are illustrated by analyzing an insurance data. The real-life insurance data illustrates that the TIEx-W distribution provides better fit as compared to competing models such as Lindley–Weibull, exponentiated Weibull, Kumaraswamy–Weibull, α logarithmic transformed Weibull, and beta Weibull distributions, among others.

Suggested Citation

  • Nada M Alfaer & Sarah A Bandar & Omid Kharazmi & Hazem Al-Mofleh & Zubair Ahmad & Ahmed Z Afify, 2023. "Classical and Bayesian estimation for type-I extended-F family with an actuarial application," PLOS ONE, Public Library of Science, vol. 18(2), pages 1-23, February.
  • Handle: RePEc:plo:pone00:0275430
    DOI: 10.1371/journal.pone.0275430
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275430
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0275430&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0275430?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Scollnik, 2007. "On composite lognormal-Pareto models," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2007(1), pages 20-33.
    2. Beirlant, J. & Matthys, G. & Dierckx, G., 2001. "Heavy-Tailed Distributions and Rating," ASTIN Bulletin, Cambridge University Press, vol. 31(1), pages 37-58, May.
    3. Abu Bakar, S.A. & Hamzah, N.A. & Maghsoudi, M. & Nadarajah, S., 2015. "Modeling loss data using composite models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 146-154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Osatohanmwen, 2025. "A new two-component hybrid model for highly right-skewed data: estimation algorithm and application to finance and rainfall data," BEMPS - Bozen Economics & Management Paper Series BEMPS108, Faculty of Economics and Management at the Free University of Bozen.
    2. Bowen Liu & Malwane M. A. Ananda, 2022. "A Generalized Family of Exponentiated Composite Distributions," Mathematics, MDPI, vol. 10(11), pages 1-18, June.
    3. Ahmed Z. Afify & Ahmed M. Gemeay & Noor Akma Ibrahim, 2020. "The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    4. Marco Bee, 2024. "On discriminating between lognormal and Pareto tail: an unsupervised mixture-based approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 251-269, June.
    5. Wei Zhao & Saima K Khosa & Zubair Ahmad & Muhammad Aslam & Ahmed Z Afify, 2020. "Type-I heavy tailed family with applications in medicine, engineering and insurance," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-24, August.
    6. Bae, Taehan & Miljkovic, Tatjana, 2024. "Loss modeling with the size-biased lognormal mixture and the entropy regularized EM algorithm," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 182-195.
    7. Johan René van Dorp & Ekundayo Shittu, 2024. "Two-sided distributions with applications in insurance loss modeling," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 827-861, July.
    8. Girish Aradhye & George Tzougas & Deepesh Bhati, 2024. "A Copula-Based Bivariate Composite Model for Modelling Claim Costs," Mathematics, MDPI, vol. 12(2), pages 1-17, January.
    9. Muhammad Hilmi Abdul Majid & Kamarulzaman Ibrahim & Nurulkamal Masseran, 2023. "Three-Part Composite Pareto Modelling for Income Distribution in Malaysia," Mathematics, MDPI, vol. 11(13), pages 1-15, June.
    10. Li, Zhengxiao & Wang, Fei & Zhao, Zhengtang, 2024. "A new class of composite GBII regression models with varying threshold for modeling heavy-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 45-66.
    11. Walena Anesu Marambakuyana & Sandile Charles Shongwe, 2024. "Composite and Mixture Distributions for Heavy-Tailed Data—An Application to Insurance Claims," Mathematics, MDPI, vol. 12(2), pages 1-23, January.
    12. Mathias Silva & Michel Lubrano, 2024. "Bayesian inference for income inequality using a Pareto II tail with an uncertain threshold: Combining EU-SILC and WID data," AMSE Working Papers 2429, Aix-Marseille School of Economics, France.
    13. Chen, Zezhun & Dassios, Angelos & Tzougas, George, 2022. "EM estimation for the bivariate mixed exponential regression model," LSE Research Online Documents on Economics 115132, London School of Economics and Political Science, LSE Library.
    14. Brahimi, Brahim & Meraghni, Djamel & Necir, Abdelhakim & Zitikis, Ričardas, 2011. "Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 325-334.
    15. Min Deng & Mostafa Aminzadeh & Min Ji, 2021. "Bayesian Predictive Analysis of Natural Disaster Losses," Risks, MDPI, vol. 9(1), pages 1-23, January.
    16. Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2025. "Hidden semi-Markov models for rainfall-related insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 120(C), pages 91-106.
    17. Miljkovic, Tatjana & Grün, Bettina, 2016. "Modeling loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 387-396.
    18. Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2023. "Hidden semi-Markov models for rainfall-related insurance claims," Discussion Papers 2023/17, Norwegian School of Economics, Department of Business and Management Science.
    19. Reynkens, Tom & Verbelen, Roel & Beirlant, Jan & Antonio, Katrien, 2017. "Modelling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 65-77.
    20. Jackie Li & Jia Liu, 2023. "Claims Modelling with Three-Component Composite Models," Risks, MDPI, vol. 11(11), pages 1-16, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0275430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.