IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0274590.html
   My bibliography  Save this article

The impact of multi-level interventions on the second-wave SARS-CoV-2 transmission in China

Author

Listed:
  • Yuanchen He
  • Yinzi Chen
  • Lin Yang
  • Ying Zhou
  • Run Ye
  • Xiling Wang

Abstract

Background: A re-emergence of COVID-19 occurred in the northeast of China in early 2021. Different levels of non-pharmaceutical interventions, from mass testing to city-level lockdown, were implemented to contain the transmission of SARS-CoV-2. Our study is aimed to evaluate the impact of multi-level control measures on the second-wave SARS-CoV-2 transmission in the most affected cities in China. Methods: Five cities with over 100 reported COVID-19 cases within one month from Dec 2020 to Feb 2021 were included in our analysis. We fitted the exponential growth model to estimate basic reproduction number (R0), and used a Bayesian approach to assess the dynamics of the time-varying reproduction number (Rt). We fitted linear regression lines on Rt estimates for comparing the decline rates of Rt across cities, and the slopes were tested by analysis of covariance. The effect of non-pharmaceutical interventions (NPIs) was quantified by relative Rt reduction and statistically compared by analysis of variance. Results: A total of 2,609 COVID-19 cases were analyzed in this study. We estimated that R0 all exceeded 1, with the highest value of 3.63 (1.36, 8.53) in Haerbin and the lowest value of 2.45 (1.44, 3.98) in Shijiazhuang. Downward trends of Rt were found in all cities, and the starting time of Rt

Suggested Citation

  • Yuanchen He & Yinzi Chen & Lin Yang & Ying Zhou & Run Ye & Xiling Wang, 2022. "The impact of multi-level interventions on the second-wave SARS-CoV-2 transmission in China," PLOS ONE, Public Library of Science, vol. 17(9), pages 1-12, September.
  • Handle: RePEc:plo:pone00:0274590
    DOI: 10.1371/journal.pone.0274590
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0274590
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0274590&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0274590?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ping-Chen Chung & Ta-Chien Chan, 2021. "Impact of physical distancing policy on reducing transmission of SARS-CoV-2 globally: Perspective from government’s response and residents’ compliance," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-17, August.
    2. Mattia Manica & Giorgio Guzzetta & Flavia Riccardo & Antonio Valenti & Piero Poletti & Valentina Marziano & Filippo Trentini & Xanthi Andrianou & Alberto Mateo-Urdiales & Martina del Manso & Massimo F, 2021. "Impact of tiered restrictions on human activities and the epidemiology of the second wave of COVID-19 in Italy," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Baisheng Li & Aiping Deng & Kuibiao Li & Yao Hu & Zhencui Li & Yaling Shi & Qianling Xiong & Zhe Liu & Qianfang Guo & Lirong Zou & Huan Zhang & Meng Zhang & Fangzhu Ouyang & Juan Su & Wenzhe Su & Jing, 2022. "Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Alberto Aleta & David Martín-Corral & Ana Pastore y Piontti & Marco Ajelli & Maria Litvinova & Matteo Chinazzi & Natalie E. Dean & M. Elizabeth Halloran & Ira M. Longini Jr & Stefano Merler & Alex Pen, 2020. "Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19," Nature Human Behaviour, Nature, vol. 4(9), pages 964-971, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajime Tomura, 2022. "Associations between components of household expenditures and the rate of change in the number of new confirmed cases of COVID-19 in Japan: Time-series analysis," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-33, April.
    2. Bernardo García Bulle Bueno & Abigail L. Horn & Brooke M. Bell & Mohsen Bahrami & Burçin Bozkaya & Alex Pentland & Kayla Haye & Esteban Moro, 2024. "Effect of mobile food environments on fast food visits," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. David Ehrlich & Nora Szech, 2022. "How To Start a Grassroots Movement," Papers 2209.01345, arXiv.org.
    5. Biao Zhou & Runhong Zhou & Bingjie Tang & Jasper Fuk-Woo Chan & Mengxiao Luo & Qiaoli Peng & Shuofeng Yuan & Hang Liu & Bobo Wing-Yee Mok & Bohao Chen & Pui Wang & Vincent Kwok-Man Poon & Hin Chu & Ch, 2022. "A broadly neutralizing antibody protects Syrian hamsters against SARS-CoV-2 Omicron challenge," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Umit Cirakli & Ibrahim Dogan & Mehmet Gozlu, 2022. "The Relationship Between COVID-19 Cases and COVID-19 Testing: a Panel Data Analysis on OECD Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(3), pages 1737-1750, September.
    7. Beatrice Casati & Joseph Peter Verdi & Alexander Hempelmann & Maximilian Kittel & Andrea Gutierrez Klaebisch & Bianca Meister & Sybille Welker & Sonal Asthana & Salvatore Giorgio & Pavle Boskovic & Ka, 2022. "Rapid, adaptable and sensitive Cas13-based COVID-19 diagnostics using ADESSO," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Mehdi Abid & Habib Sekrafi & Ramzi Farhani & Zouheyr Gheraia & Hanane Abdelli, 2024. "Do Institutional Quality and Terrorism Affect the Natural Resources Rents?," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 76-85, January.
    9. Hasan Alp Boz & Mohsen Bahrami & Selim Balcisoy & Burcin Bozkaya & Nina Mazar & Aaron Nichols & Alex Pentland, 2024. "Investigating neighborhood adaptability using mobility networks: a case study of the COVID-19 pandemic," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    10. Li, Tingting & Guo, Youming, 2022. "Optimal control and cost-effectiveness analysis of a new COVID-19 model for Omicron strain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    11. Nagel, Kai & Rakow, Christian & Müller, Sebastian A., 2021. "Realistic agent-based simulation of infection dynamics and percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    12. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2023. "Pathogen diversity in meta-population networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    13. Yong Dam Jeong & Keisuke Ejima & Kwang Su Kim & Woo Joohyeon & Shoya Iwanami & Yasuhisa Fujita & Il Hyo Jung & Kazuyuki Aihara & Kenji Shibuya & Shingo Iwami & Ana I. Bento & Marco Ajelli, 2022. "Designing isolation guidelines for COVID-19 patients with rapid antigen tests," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Diana Rose E. Ranoa & Robin L. Holland & Fadi G. Alnaji & Kelsie J. Green & Leyi Wang & Richard L. Fredrickson & Tong Wang & George N. Wong & Johnny Uelmen & Sergei Maslov & Zachary J. Weiner & Alexei, 2022. "Mitigation of SARS-CoV-2 transmission at a large public university," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Zhou, Xin & Liao, Wenzhu, 2023. "Research on demand forecasting and distribution of emergency medical supplies using an agent-based model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    16. Utsumi, Shinobu & Arefin, Md. Rajib & Tatsukawa, Yuichi & Tanimoto, Jun, 2022. "How and to what extent does the anti-social behavior of violating self-quarantine measures increase the spread of disease?," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    17. Fabian Lorig & Emil Johansson & Paul Davidsson, 2021. "Agent-Based Social Simulation of the Covid-19 Pandemic: A Systematic Review," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 24(3), pages 1-5.
    18. Brian Cepparulo, 2022. "The impact of COVID-19 restrictions on economic activity: Evidence from the Italian regional system," French Stata Users' Group Meetings 2022 15, Stata Users Group.
    19. Pan Zhang & Zhouling Bai, 2024. "Leaving messages as coproduction: impact of government COVID-19 non-pharmaceutical interventions on citizens’ online participation in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    20. Abdin, Adam F. & Fang, Yi-Ping & Caunhye, Aakil & Alem, Douglas & Barros, Anne & Zio, Enrico, 2023. "An optimization model for planning testing and control strategies to limit the spread of a pandemic – The case of COVID-19," European Journal of Operational Research, Elsevier, vol. 304(1), pages 308-324.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0274590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.