IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v669y2025ics0378437125002717.html
   My bibliography  Save this article

Identifying active spreading nodes in complex networks

Author

Listed:
  • Liu, Jin
  • Yu, Wenbin
  • Zhang, ChengJun
  • Gu, JiaRui
  • Yu, Louyang
  • Zhong, Guancheng

Abstract

Identifying influential spreaders in complex networks remains a significant research topic. Previous studies have primarily focused on estimating the source of spread. Our research focuses on identifying whether an infected node has sustained infection capabilities during the spreading process. We define a node with a continuous infection capability as an active node with high node activity. We propose an algorithm based on node centrality to calculate the node activity. Unlike the established paradigms, we posit that node centrality is negatively correlated with node activity. Nodes with lower centrality exhibited higher activity and infectiousness. In contrast, nodes with higher centrality may have recovered from the infection and resulted in lower activity and a diminished capacity to propagate the virus. Experiments on artificial and empirical networks demonstrate that the proposed method can effectively identify nodes with sustained infection capability. The proposed method enhances our understanding of the spreading dynamics and provides a valuable tool for managing and controlling the spread of information or diseases in complex networks.

Suggested Citation

  • Liu, Jin & Yu, Wenbin & Zhang, ChengJun & Gu, JiaRui & Yu, Louyang & Zhong, Guancheng, 2025. "Identifying active spreading nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 669(C).
  • Handle: RePEc:eee:phsmap:v:669:y:2025:i:c:s0378437125002717
    DOI: 10.1016/j.physa.2025.130619
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125002717
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130619?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:669:y:2025:i:c:s0378437125002717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.