IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0271714.html
   My bibliography  Save this article

Predicting age and gender from network telemetry: Implications for privacy and impact on policy

Author

Listed:
  • Lida Kuang
  • Samruda Pobbathi
  • Yuri Mansury
  • Matthew A Shapiro
  • Vijay K Gurbani

Abstract

The systematic monitoring of private communications through the use of information technology pervades the digital age. One result of this is the potential availability of vast amount of data tracking the characteristics of mobile network users. Such data is becoming increasingly accessible for commercial use, while the accessibility of such data raises questions about the degree to which personal information can be protected. Existing regulations may require the removal of personally-identifiable information (PII) from datasets before they can be processed, but research now suggests that powerful machine learning classification methods are capable of targeting individuals for personalized marketing purposes, even in the absence of PII. This study aims to demonstrate how machine learning methods can be deployed to extract demographic characteristics. Specifically, we investigate whether key demographics—gender and age—of mobile users can be accurately identified by third parties using deep learning techniques based solely on observations of the user’s interactions within the network. Using an anonymized dataset from a Latin American country, we show the relative ease by which PII in terms of the age and gender demographics can be inferred; specifically, our neural networks model generates an estimate for gender with an accuracy rate of 67%, outperforming decision tree, random forest, and gradient boosting models by a significant margin. Neural networks achieve an even higher accuracy rate of 78% in predicting the subscriber age. These results suggest the need for a more robust regulatory framework governing the collection of personal data to safeguard users from predatory practices motivated by fraudulent intentions, prejudices, or consumer manipulation. We discuss in particular how advances in machine learning have chiseled away a number of General Data Protection Regulation (GDPR) articles designed to protect consumers from the imminent threat of privacy violations.

Suggested Citation

  • Lida Kuang & Samruda Pobbathi & Yuri Mansury & Matthew A Shapiro & Vijay K Gurbani, 2022. "Predicting age and gender from network telemetry: Implications for privacy and impact on policy," PLOS ONE, Public Library of Science, vol. 17(7), pages 1-28, July.
  • Handle: RePEc:plo:pone00:0271714
    DOI: 10.1371/journal.pone.0271714
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271714
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0271714&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0271714?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    2. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    3. Cutler, Jennifer & Culotta, Aron, 2019. "Using weak supervision to scale the development of machine-learning models for social media-based marketing research," Applied Marketing Analytics: The Peer-Reviewed Journal, Henry Stewart Publications, vol. 5(2), pages 159-169, July.
    4. Shane Frederick & George Loewenstein & Ted O'Donoghue, 2002. "Time Discounting and Time Preference: A Critical Review," Journal of Economic Literature, American Economic Association, vol. 40(2), pages 351-401, June.
    5. King, Gary & Pan, Jennifer & Roberts, Margaret E., 2013. "How Censorship in China Allows Government Criticism but Silences Collective Expression," American Political Science Review, Cambridge University Press, vol. 107(2), pages 326-343, May.
    6. Ranjit Panigrahi & Samarjeet Borah & Akash Kumar Bhoi & Muhammad Fazal Ijaz & Moumita Pramanik & Rutvij H. Jhaveri & Chiranji Lal Chowdhary, 2021. "Performance Assessment of Supervised Classifiers for Designing Intrusion Detection Systems: A Comprehensive Review and Recommendations for Future Research," Mathematics, MDPI, vol. 9(6), pages 1-32, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teklewold, Hailemariam, 2011. "Farming or burning? shadow prices and farmer’s impatience on the allocation of multi-purpose resource in the mixed farming system of Ethiopia," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 116080, European Association of Agricultural Economists.
    2. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    3. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    4. Leonhard K. Lades & Liam Delaney, 2024. "Self-control failures, as judged by themselves," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    5. Leopoldo Fergusson & Carlos Molina, 2020. "Facebook Causes Protests," HiCN Working Papers 323, Households in Conflict Network.
    6. Hinnosaar, Marit, 2016. "Time inconsistency and alcohol sales restrictions," European Economic Review, Elsevier, vol. 87(C), pages 108-131.
    7. Caroline Flammer & Michael W. Toffel & Kala Viswanathan, 2021. "Shareholder activism and firms' voluntary disclosure of climate change risks," Strategic Management Journal, Wiley Blackwell, vol. 42(10), pages 1850-1879, October.
    8. Min Gong & David Krantz & Elke Weber, 2014. "Why Chinese discount future financial and environmental gains but not losses more than Americans," Journal of Risk and Uncertainty, Springer, vol. 49(2), pages 103-124, October.
    9. Matteo Iacoviello, 2008. "Household Debt and Income Inequality, 1963–2003," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(5), pages 929-965, August.
    10. Cosmo, Valeria Di & O’Hora, Denis, 2017. "Nudging electricity consumption using TOU pricing and feedback: evidence from Irish households," Journal of Economic Psychology, Elsevier, vol. 61(C), pages 1-14.
    11. repec:cup:judgdm:v:16:y:2021:i:3:p:709-728 is not listed on IDEAS
    12. Richard M. H. Suen, 2014. "Time Preference And The Distributions Of Wealth And Income," Economic Inquiry, Western Economic Association International, vol. 52(1), pages 364-381, January.
    13. Mitchell, O.S. & Piggott, J., 2016. "Workplace-Linked Pensions for an Aging Demographic," Handbook of the Economics of Population Aging, in: Piggott, John & Woodland, Alan (ed.), Handbook of the Economics of Population Aging, edition 1, volume 1, chapter 0, pages 865-904, Elsevier.
    14. Aman, Hiroyuki & Motonishi, Taizo & Ogawa, Kazuhito & Omori, Kozo, 2024. "The effect of financial literacy on long-term recognition and short-term trade in mutual funds: Evidence from Japan," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 762-783.
    15. Kimmich, Christian & Fischbacher, Urs, 2016. "Behavioral determinants of supply chain integration and coexistence," Journal of Forest Economics, Elsevier, vol. 25(C), pages 55-77.
    16. Filiz-Ozbay, Emel & Guryan, Jonathan & Hyndman, Kyle & Kearney, Melissa & Ozbay, Erkut Y., 2015. "Do lottery payments induce savings behavior? Evidence from the lab," Journal of Public Economics, Elsevier, vol. 126(C), pages 1-24.
    17. Stephen L. Cheung & Agnieszka Tymula & Xueting Wang, 2022. "Present bias for monetary and dietary rewards," Experimental Economics, Springer;Economic Science Association, vol. 25(4), pages 1202-1233, September.
    18. Sandra Wankmüller, 2023. "A comparison of approaches for imbalanced classification problems in the context of retrieving relevant documents for an analysis," Journal of Computational Social Science, Springer, vol. 6(1), pages 91-163, April.
    19. Shoshan, Vered & Hazan, Tamir & Plonsky, Ori, 2023. "BEAST-Net: Learning novel behavioral insights using a neural network adaptation of a behavioral model," OSF Preprints kaeny, Center for Open Science.
    20. Lex Borghans & Angela Lee Duckworth & James J. Heckman & Bas ter Weel, 2008. "The Economics and Psychology of Personality Traits," Journal of Human Resources, University of Wisconsin Press, vol. 43(4).
    21. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0271714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.