IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0271292.html
   My bibliography  Save this article

A QUBO formulation for top-τ eigencentrality nodes

Author

Listed:
  • Prosper D Akrobotu
  • Tamsin E James
  • Christian F A Negre
  • Susan M Mniszewski

Abstract

The efficient calculation of the centrality or “hierarchy” of nodes in a network has gained great relevance in recent years due to the generation of large amounts of data. The eigenvector centrality (aka eigencentrality) is quickly becoming a good metric for centrality due to both its simplicity and fidelity. In this work we lay the foundations for solving the eigencentrality problem of ranking the importance of the nodes of a network with scores from the eigenvector of the network, using quantum computational paradigms such as quantum annealing and gate-based quantum computing. The problem is reformulated as a quadratic unconstrained binary optimization (QUBO) that can be solved on both quantum architectures. The results focus on correctly identifying a given number of the most important nodes in numerous networks given by the sparse vector solution of our QUBO formulation of the problem of identifying the top-τ highest eigencentrality nodes in a network on both the D-Wave and IBM quantum computers.

Suggested Citation

  • Prosper D Akrobotu & Tamsin E James & Christian F A Negre & Susan M Mniszewski, 2022. "A QUBO formulation for top-τ eigencentrality nodes," PLOS ONE, Public Library of Science, vol. 17(7), pages 1-18, July.
  • Handle: RePEc:plo:pone00:0271292
    DOI: 10.1371/journal.pone.0271292
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271292
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0271292&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0271292?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    2. Leo Katz, 1953. "A new status index derived from sociometric analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 39-43, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umed Temurshoev, 2008. "Who's Who in Networks. Wanted: the Key Group," Working Papers 08-08, NET Institute, revised Sep 2008.
    2. Yu, Senbin & Gao, Liang & Xu, Lida & Gao, Zi-You, 2019. "Identifying influential spreaders based on indirect spreading in neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 418-425.
    3. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    4. Zhu, Xiaoyu & Hao, Rongxia, 2024. "Identifying influential nodes in social networks via improved Laplacian centrality," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    5. René van den Brink & Agnieszka Rusinowska, 2017. "The degree measure as utility function over positions in networks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01592181, HAL.
    6. Zhu, Xiaoyu & Hao, Rongxia, 2025. "Finding influential nodes in complex networks by integrating nodal intrinsic and extrinsic centrality," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    7. Huang, Wencheng & Li, Haoran & Yin, Yanhui & Zhang, Zhi & Xie, Anhao & Zhang, Yin & Cheng, Guo, 2024. "Node importance identification of unweighted urban rail transit network: An Adjacency Information Entropy based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    8. Xu, Xiao-Ke & Wang, Xue & Xiao, Jing, 2018. "Inferring parent–child relationships by a node-remove centrality framework in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 222-232.
    9. Li, Yongli & Wu, Chong & Wang, Xiaoyu & Luo, Peng, 2014. "A network-based and multi-parameter model for finding influential authors," Journal of Informetrics, Elsevier, vol. 8(3), pages 791-799.
    10. Gómez, Daniel & Figueira, José Rui & Eusébio, Augusto, 2013. "Modeling centrality measures in social network analysis using bi-criteria network flow optimization problems," European Journal of Operational Research, Elsevier, vol. 226(2), pages 354-365.
    11. László Csató, 2017. "Measuring centrality by a generalization of degree," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(4), pages 771-790, December.
    12. Zhang, Xiaohang & Cui, Huiyuan & Zhu, Ji & Du, Yu & Wang, Qi & Shi, Wenhua, 2017. "Measuring the dissimilarity of multiplex networks: An empirical study of international trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 380-394.
    13. David L. Alderson & Daniel Funk & Ralucca Gera, 2020. "Analysis of the global maritime transportation system as a layered network," Journal of Transportation Security, Springer, vol. 13(3), pages 291-325, December.
    14. Ghulam Muhiuddin & Sovan Samanta & Abdulrahman F. Aljohani & Abeer M. Alkhaibari, 2023. "A Study on Graph Centrality Measures of Different Diseases Due to DNA Sequencing," Mathematics, MDPI, vol. 11(14), pages 1-18, July.
    15. Yeruva, Sujatha & Devi, T. & Reddy, Y. Samtha, 2016. "Selection of influential spreaders in complex networks using Pareto Shell decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 133-144.
    16. van den Brink, René & Rusinowska, Agnieszka, 2022. "The degree measure as utility function over positions in graphs and digraphs," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1033-1044.
    17. Francis Bloch & Matthew O. Jackson & Pietro Tebaldi, 2023. "Centrality measures in networks," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 61(2), pages 413-453, August.
    18. Marco Pelliccia, 2012. "Risk-sharing and probabilistic network structure," Birkbeck Working Papers in Economics and Finance 1214, Birkbeck, Department of Economics, Mathematics & Statistics.
    19. Wu, Tao & Xian, Xingping & Zhong, Linfeng & Xiong, Xi & Stanley, H. Eugene, 2018. "Power iteration ranking via hybrid diffusion for vital nodes identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 802-815.
    20. Wang, Feifei & Sun, Zejun & Gan, Quan & Fan, Aiwan & Shi, Hesheng & Hu, Haifeng, 2022. "Influential node identification by aggregating local structure information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0271292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.