IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0269306.html
   My bibliography  Save this article

Estimating the basic reproduction number at the beginning of an outbreak

Author

Listed:
  • Sawitree Boonpatcharanon
  • Jane M Heffernan
  • Hanna Jankowski

Abstract

We compare several popular methods of estimating the basic reproduction number, R0, focusing on the early stages of an epidemic, and assuming weekly reports of new infecteds. We study the situation when data is generated by one of three standard epidemiological compartmental models: SIR, SEIR, and SEAIR; and examine the sensitivity of the estimators to the model structure. As some methods are developed assuming specific epidemiological models, our work adds a study of their performance in both a well-specified (data generating model and method model are the same) and miss-specified (data generating model and method model differ) settings. We also study R0 estimation using Canadian COVID-19 case report data. In this study we focus on examples of influenza and COVID-19, though the general approach is easily extendable to other scenarios. Our simulation study reveals that some estimation methods tend to work better than others, however, no singular best method was clearly detected. In the discussion, we provide recommendations for practitioners based on our results.

Suggested Citation

  • Sawitree Boonpatcharanon & Jane M Heffernan & Hanna Jankowski, 2022. "Estimating the basic reproduction number at the beginning of an outbreak," PLOS ONE, Public Library of Science, vol. 17(6), pages 1-24, June.
  • Handle: RePEc:plo:pone00:0269306
    DOI: 10.1371/journal.pone.0269306
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269306
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0269306&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0269306?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. P. D. O’Neill & G. O. Roberts, 1999. "Bayesian inference for partially observed stochastic epidemics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(1), pages 121-129.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kypraios, Theodore, 2009. "A note on maximum likelihood estimation of the initial number of susceptibles in the general stochastic epidemic model," Statistics & Probability Letters, Elsevier, vol. 79(18), pages 1972-1976, September.
    2. McKinley, Trevelyan J. & Ross, Joshua V. & Deardon, Rob & Cook, Alex R., 2014. "Simulation-based Bayesian inference for epidemic models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 434-447.
    3. repec:plo:pcbi00:1000683 is not listed on IDEAS
    4. Ioannis Andrianakis & Ian R Vernon & Nicky McCreesh & Trevelyan J McKinley & Jeremy E Oakley & Rebecca N Nsubuga & Michael Goldstein & Richard G White, 2015. "Bayesian History Matching of Complex Infectious Disease Models Using Emulation: A Tutorial and a Case Study on HIV in Uganda," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-18, January.
    5. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," Working Papers 21-18, Federal Reserve Bank of Philadelphia.
    6. repec:plo:pcbi00:1003587 is not listed on IDEAS
    7. repec:plo:pcbi00:1004869 is not listed on IDEAS
    8. Nik J Cunniffe & Francisco F Laranjeira & Franco M Neri & R Erik DeSimone & Christopher A Gilligan, 2014. "Cost-Effective Control of Plant Disease When Epidemiological Knowledge Is Incomplete: Modelling Bahia Bark Scaling of Citrus," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-14, August.
    9. Golightly, Andrew & Bradley, Emma & Lowe, Tom & Gillespie, Colin S., 2019. "Correlated pseudo-marginal schemes for time-discretised stochastic kinetic models," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 92-107.
    10. Xiang, Fei & Neal, Peter, 2014. "Efficient MCMC for temporal epidemics via parameter reduction," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 240-250.
    11. Annemarie Bouma & Ivo Claassen & Ketut Natih & Don Klinkenberg & Christl A Donnelly & Guus Koch & Michiel van Boven, 2009. "Estimation of Transmission Parameters of H5N1 Avian Influenza Virus in Chickens," PLOS Pathogens, Public Library of Science, vol. 5(1), pages 1-13, January.
    12. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," CESifo Working Paper Series 8977, CESifo.
    13. David A Rasmussen & Oliver Ratmann & Katia Koelle, 2011. "Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-11, August.
    14. Ross, J.V. & Pagendam, D.E. & Pollett, P.K., 2009. "On parameter estimation in population models II: Multi-dimensional processes and transient dynamics," Theoretical Population Biology, Elsevier, vol. 75(2), pages 123-132.
    15. Gyanendra Pokharel & Rob Deardon, 2022. "Emulation‐based inference for spatial infectious disease transmission models incorporating event time uncertainty," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 455-479, March.
    16. Ross, J.V., 2012. "On parameter estimation in population models III: Time-inhomogeneous processes and observation error," Theoretical Population Biology, Elsevier, vol. 82(1), pages 1-17.
    17. Jonas E. Arias & Jesús Fernández-Villaverde & Juan Rubio Ramírez & Minchul Shin, 2021. "The Causal Effects of Lockdown Policies on Health and Macroeconomic Outcomes," NBER Working Papers 28617, National Bureau of Economic Research, Inc.
    18. Li, Ning & Qian, Guoqi & Huggins, Richard, 2006. "A latent variable model for estimating disease transmission rate from data on household outbreaks," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3354-3368, July.
    19. Timothy Kinyanjui & Jo Middleton & Stefan Güttel & Jackie Cassell & Joshua Ross & Thomas House, 2018. "Scabies in residential care homes: Modelling, inference and interventions for well-connected population sub-units," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-24, March.
    20. Karen M Ong & Michael S Phillips & Charles S Peskin, 2020. "A mathematical model and inference method for bacterial colonization in hospital units applied to active surveillance data for carbapenem-resistant enterobacteriaceae," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-32, November.
    21. Yang, Yang & Longini Jr., Ira M. & Elizabeth Halloran, M., 2007. "A data-augmentation method for infectious disease incidence data from close contact groups," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6582-6595, August.
    22. Ross, J.V. & Pollett, P.K., 2007. "On costs and decisions in population management," Ecological Modelling, Elsevier, vol. 201(1), pages 60-66.
    23. Frank Ball & Peter Neal, 2025. "Fast likelihood calculations for emerging epidemics," Statistical Inference for Stochastic Processes, Springer, vol. 28(1), pages 1-25, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0269306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.