IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0267440.html
   My bibliography  Save this article

Design of PM2.5 monitoring and forecasting system for opencast coal mine road based on internet of things and ARIMA Mode

Author

Listed:
  • Meng Wang
  • Qiaofeng Zhang
  • Caiwang Tai
  • Jiazhen Li
  • Zongwei Yang
  • Kejun Shen
  • Chengbin Guo

Abstract

The dust produced by transportation roads is the primary source of PM2.5 pollution in opencast coal mines. However, China’s opencast coal mines lack an efficient and straightforward construction scheme of monitoring and management systems and a short-term prediction model to support dust control. In this study, by establishing a PM2.5 and other real-time environmental information to monitor, manage, visualize and predict the Internet of things monitoring and prediction system to solve these problems. This study solves these problems by establishing an Internet of things monitoring and prediction system, which can monitor PM2.5 and other real-time environmental information for monitoring, management, visualization, and prediction. We use Lua language to write interface protocol code in the APRUS adapter, which can simplify the construction of environmental monitoring system. The Internet of things platform has a custom visualization scheme, which is convenient for managers without programming experience to manage sensors and real-time data. We analyze real-time data using a time series model in Python, and RMSE and MAPE evaluate cross-validation results. The evaluation results show that the average RMSE of the ARIMA (4,1,0) and Double Exponential Smoothing models are 12.68 and 8.34, respectively. Both models have good generalization ability. The average MAPE of the fitting results are 10.5% and 1.7%, respectively, and the relative error is small. Because the ARIMA model has a more flexible prediction range and strong expansibility, and ARIMA model shows good adaptability in cross-validation, the ARIMA model is more suitable as the short-term prediction model of the prediction system. The prediction system can continuously predict PM2.5 dust through the ARIMA model. The monitoring and prediction system is very suitable for managers of opencast coal mines to prevent and control road dust.

Suggested Citation

  • Meng Wang & Qiaofeng Zhang & Caiwang Tai & Jiazhen Li & Zongwei Yang & Kejun Shen & Chengbin Guo, 2022. "Design of PM2.5 monitoring and forecasting system for opencast coal mine road based on internet of things and ARIMA Mode," PLOS ONE, Public Library of Science, vol. 17(5), pages 1-28, May.
  • Handle: RePEc:plo:pone00:0267440
    DOI: 10.1371/journal.pone.0267440
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267440
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0267440&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0267440?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Abdul Rehman & Muhammad Ahmed Qureshi & Tariq Ali & Muhammad Irfan & Saima Abdullah & Sana Yasin & Umar Draz & Adam Glowacz & Grzegorz Nowakowski & Abdullah Alghamdi & Abdulaziz A. Alsulami & Mariusz , 2021. "Smart Fire Detection and Deterrent System for Human Savior by Using Internet of Things (IoT)," Energies, MDPI, vol. 14(17), pages 1-30, September.
    2. Sen, Parag & Roy, Mousumi & Pal, Parimal, 2016. "Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization," Energy, Elsevier, vol. 116(P1), pages 1031-1038.
    3. Neeraj Dhanraj Bokde & Zaher Mundher Yaseen & Gorm Bruun Andersen, 2020. "ForecastTB—An R Package as a Test-Bench for Time Series Forecasting—Application of Wind Speed and Solar Radiation Modeling," Energies, MDPI, vol. 13(10), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali O. Al-Sulttani & Amimul Ahsan & Basim A. R. Al-Bakri & Mahir Mahmod Hason & Nik Norsyahariati Nik Daud & S. Idrus & Omer A. Alawi & Elżbieta Macioszek & Zaher Mundher Yaseen, 2022. "Double-Slope Solar Still Productivity Based on the Number of Rubber Scraper Motions," Energies, MDPI, vol. 15(21), pages 1-34, October.
    2. Ye, Li & Yang, Deling & Dang, Yaoguo & Wang, Junjie, 2022. "An enhanced multivariable dynamic time-delay discrete grey forecasting model for predicting China's carbon emissions," Energy, Elsevier, vol. 249(C).
    3. Deyun Wang & Yanling Liu & Zeng Wu & Hongxue Fu & Yong Shi & Haixiang Guo, 2018. "Scenario Analysis of Natural Gas Consumption in China Based on Wavelet Neural Network Optimized by Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 11(4), pages 1-16, April.
    4. Bokde, Neeraj Dhanraj & Tranberg, Bo & Andresen, Gorm Bruun, 2021. "Short-term CO2 emissions forecasting based on decomposition approaches and its impact on electricity market scheduling," Applied Energy, Elsevier, vol. 281(C).
    5. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    6. Wang, Lei & Wang, Xinyu & Zhao, Zhongchao, 2024. "Mid-term electricity demand forecasting using improved multi-mode reconstruction and particle swarm-enhanced support vector regression," Energy, Elsevier, vol. 304(C).
    7. Arouna, Aminou & Fatognon, Irene Akoko & Saito, Kazuki & Futakuchi, Koichi, 2021. "Moving toward rice self-sufficiency in sub-Saharan Africa by 2030: Lessons learned from 10 years of the Coalition for African Rice Development," World Development Perspectives, Elsevier, vol. 21(C).
    8. Wang, Qiang & Jiang, Feng, 2019. "Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States," Energy, Elsevier, vol. 178(C), pages 781-803.
    9. Jacob Hale & Suzanna Long, 2020. "A Time Series Sustainability Assessment of a Partial Energy Portfolio Transition," Energies, MDPI, vol. 14(1), pages 1-14, December.
    10. Magdalena Tutak & Jarosław Brodny, 2019. "Forecasting Methane Emissions from Hard Coal Mines Including the Methane Drainage Process," Energies, MDPI, vol. 12(20), pages 1-28, October.
    11. Hu, Yusha & Man, Yi, 2023. "Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    12. Hu, Huanling & Wang, Lin & Lv, Sheng-Xiang, 2020. "Forecasting energy consumption and wind power generation using deep echo state network," Renewable Energy, Elsevier, vol. 154(C), pages 598-613.
    13. Huiping Wang & Yi Wang, 2022. "Estimating per Capita Primary Energy Consumption Using a Novel Fractional Gray Bernoulli Model," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    14. Mahdi Asadi & Iman Larki & Mohammad Mahdi Forootan & Rouhollah Ahmadi & Meisam Farajollahi, 2023. "Long-Term Scenario Analysis of Electricity Supply and Demand in Iran: Time Series Analysis, Renewable Electricity Development, Energy Efficiency and Conservation," Sustainability, MDPI, vol. 15(5), pages 1-24, March.
    15. Ma, Haoran, 2022. "Prediction of industrial power consumption in Jiangsu Province by regression model of time variable," Energy, Elsevier, vol. 239(PB).
    16. Duan, Tianyao & Guo, Huan & Qi, Xiao & Sun, Ming & Forrest, Jeffrey, 2024. "A novel information enhanced Grey Lotka–Volterra model driven by system mechanism and data for energy forecasting of WEET project in China," Energy, Elsevier, vol. 304(C).
    17. Ying Wang & Peipei Shang & Lichun He & Yingchun Zhang & Dandan Liu, 2018. "Can China Achieve the 2020 and 2030 Carbon Intensity Targets through Energy Structure Adjustment?," Energies, MDPI, vol. 11(10), pages 1-32, October.
    18. Shuyu Li & Xuan Yang & Rongrong Li, 2019. "Forecasting Coal Consumption in India by 2030: Using Linear Modified Linear (MGM-ARIMA) and Linear Modified Nonlinear (BP-ARIMA) Combined Models," Sustainability, MDPI, vol. 11(3), pages 1-19, January.
    19. Teng, Sin Yong & Máša, Vítězslav & Touš, Michal & Vondra, Marek & Lam, Hon Loong & Stehlík, Petr, 2022. "Waste-to-energy forecasting and real-time optimization: An anomaly-aware approach," Renewable Energy, Elsevier, vol. 181(C), pages 142-155.
    20. Piñeiro-Chousa, Juan & López-Cabarcos, M. Ángeles & Pérez-Pico, Ada María & Ribeiro-Navarrete, Belén, 2018. "Does social network sentiment influence the relationship between the S&P 500 and gold returns?," International Review of Financial Analysis, Elsevier, vol. 57(C), pages 57-64.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0267440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.