Application of quantile regression to examine changes in the distribution of Height for Age (HAZ) of Indian children aged 0–36 months using four rounds of NFHS data
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0265877
Download full text from publisher
References listed on IDEAS
- Corsi, Daniel J. & Mejía-Guevara, Iván & Subramanian, S.V., 2016. "Risk factors for chronic undernutrition among children in India: Estimating relative importance, population attributable risk and fractions," Social Science & Medicine, Elsevier, vol. 157(C), pages 165-185.
- Léandre Bassole, 2007. "Child Malnutrition in Senegal : Does access to public infrastructure really matter ? A quantile regression analysis"," Post-Print hal-00159503, HAL.
- Rana Khan & Muhammad Raza, 2016. "Determinants of malnutrition in Indian children: new evidence from IDHS through CIAF," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(1), pages 299-316, January.
- Fenske, Nora & Kneib, Thomas & Hothorn, Torsten, 2011. "Identifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 494-510.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kim, Rockli & Rajpal, Sunil & Joe, William & Corsi, Daniel J. & Sankar, Rajan & Kumar, Alok & Subramanian, S.V., 2019. "Assessing associational strength of 23 correlates of child anthropometric failure: An econometric analysis of the 2015-2016 National Family Health Survey, India," Social Science & Medicine, Elsevier, vol. 238(C), pages 1-1.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019.
"Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Papers 1312.7186, arXiv.org, revised Jun 2016.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Valid post-selection inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers CWP53/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Valid post-selection inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers 53/14, Institute for Fiscal Studies.
- Benjamin Hofner & Andreas Mayr & Nikolay Robinzonov & Matthias Schmid, 2014. "Model-based boosting in R: a hands-on tutorial using the R package mboost," Computational Statistics, Springer, vol. 29(1), pages 3-35, February.
- Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
- Bonato, Matteo & Demirer, Riza & Gupta, Rangan & Pierdzioch, Christian, 2018.
"Gold futures returns and realized moments: A forecasting experiment using a quantile-boosting approach,"
Resources Policy, Elsevier, vol. 57(C), pages 196-212.
- Matteo Bonato & Riza Demirer & Rangan Gupta & Christian Pierdzioch, 2016. "Gold Futures Returns and Realized Moments: A Forecasting Experiment Using a Quantile-Boosting Approach," Working Papers 201645, University of Pretoria, Department of Economics.
- Hofner, Benjamin & Mayr, Andreas & Schmid, Matthias, 2016. "gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i01).
- Shyamkumar Sriram & Lubna Naz, 2025. "Inequality of opportunity in child nutrition in Pakistan," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-19, February.
- Agarwal, Sandip K. & Mishra, Shubham, 2024. "Health impact evaluation of Aspirational Districts Program in India: Evidence from National Family Health Survey," Economics & Human Biology, Elsevier, vol. 54(C).
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013.
"Robust inference in high-dimensional approximately sparse quantile regression models,"
CeMMAP working papers
70/13, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Robust inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers CWP70/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Zhao, Weihua & Lian, Heng & Song, Xinyuan, 2017. "Composite quantile regression for correlated data," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 15-33.
- Katsushi S. Imai & Samuel Kobina Annim & Veena S. Kulkarni & Raghav Gaiha, 2012.
"Nutrition, Activity Intensity and Wage Linkages: Evidence from India,"
Discussion Paper Series
DP2012-10, Research Institute for Economics & Business Administration, Kobe University, revised May 2014.
- Katsushi S. Imai & Samuel Kobina Annim & Veena S. Kulkarni & Raghav Gaiha, 2014. "Nutrition, Activity Intensity and Wage Linkages: Evidence from India," Economics Discussion Paper Series 1411, Economics, The University of Manchester.
- Alexander März & Nadja Klein & Thomas Kneib & Oliver Musshoff, 2016.
"Analysing farmland rental rates using Bayesian geoadditive quantile regression,"
European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(4), pages 663-698.
- März, Alexander & Klein, Nadja & Kneib, Thomas & Mußhoff, Oliver, 2014. "Analysing farmland rental rates using Bayesian geoadditive quantile regression," DARE Discussion Papers 1403, Georg-August University of Göttingen, Department of Agricultural Economics and Rural Development (DARE).
- März, Alexander & Klein, Nadja & Kneib, Thomas & Musshoff, Oliver, 2014. "Analysing farmland rental rates using Bayesian geoadditive quantile regression," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182752, European Association of Agricultural Economists.
- Mohamed Ouhourane & Yi Yang & Andréa L. Benedet & Karim Oualkacha, 2022. "Group penalized quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 495-529, September.
- Juan Armando Torres Munguía & Inmaculada Martínez-Zarzoso, 2021. "Examining gender inequalities in factors associated with income poverty in Mexican rural households," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-25, November.
- Noh, Hohsuk & Lee, Eun, 2012. "Component Selection in Additive Quantile Regression Models," LIDAM Discussion Papers ISBA 2012021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "A quantile-boosting approach to forecasting gold returns," The North American Journal of Economics and Finance, Elsevier, vol. 35(C), pages 38-55.
- Yousuf, Kashif & Ng, Serena, 2021.
"Boosting high dimensional predictive regressions with time varying parameters,"
Journal of Econometrics, Elsevier, vol. 224(1), pages 60-87.
- Kashif Yousuf & Serena Ng, 2019. "Boosting High Dimensional Predictive Regressions with Time Varying Parameters," Papers 1910.03109, arXiv.org.
- Tepegjozova Marija & Zhou Jing & Claeskens Gerda & Czado Claudia, 2022. "Nonparametric C- and D-vine-based quantile regression," Dependence Modeling, De Gruyter, vol. 10(1), pages 1-21, January.
- Demirer, Riza & Pierdzioch, Christian & Zhang, Huacheng, 2017. "On the short-term predictability of stock returns: A quantile boosting approach," Finance Research Letters, Elsevier, vol. 22(C), pages 35-41.
- Md Merajul Islam & Nobab Md Shoukot Jahan Kibria & Sujit Kumar & Dulal Chandra Roy & Md Rezaul Karim, 2024. "Prediction of undernutrition and identification of its influencing predictors among under-five children in Bangladesh using explainable machine learning algorithms," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-22, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0265877. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/plo/pone00/0265877.html