IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0240924.html
   My bibliography  Save this article

Cyberbullying severity detection: A machine learning approach

Author

Listed:
  • Bandeh Ali Talpur
  • Declan O’Sullivan

Abstract

With widespread usage of online social networks and its popularity, social networking platforms have given us incalculable opportunities than ever before, and its benefits are undeniable. Despite benefits, people may be humiliated, insulted, bullied, and harassed by anonymous users, strangers, or peers. In this study, we have proposed a cyberbullying detection framework to generate features from Twitter content by leveraging a pointwise mutual information technique. Based on these features, we developed a supervised machine learning solution for cyberbullying detection and multi-class categorization of its severity in Twitter. In the study we applied Embedding, Sentiment, and Lexicon features along with PMI-semantic orientation. Extracted features were applied with Naïve Bayes, KNN, Decision Tree, Random Forest, and Support Vector Machine algorithms. Results from experiments with our proposed framework in a multi-class setting are promising both with respect to Kappa, classifier accuracy and f-measure metrics, as well as in a binary setting. These results indicate that our proposed framework provides a feasible solution to detect cyberbullying behavior and its severity in online social networks. Finally, we compared the results of proposed and baseline features with other machine learning algorithms. Findings of the comparison indicate the significance of the proposed features in cyberbullying detection.

Suggested Citation

  • Bandeh Ali Talpur & Declan O’Sullivan, 2020. "Cyberbullying severity detection: A machine learning approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-19, October.
  • Handle: RePEc:plo:pone00:0240924
    DOI: 10.1371/journal.pone.0240924
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0240924
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0240924&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0240924?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maximilian Alber & Julian Zimmert & Urun Dogan & Marius Kloft, 2017. "Distributed optimization of multi-class SVMs," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-18, June.
    2. Mike Thelwall & Kevan Buckley & Georgios Paltoglou, 2012. "Sentiment strength detection for the social web," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(1), pages 163-173, January.
    3. Mike Thelwall & Kevan Buckley & Georgios Paltoglou, 2012. "Sentiment strength detection for the social web," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(1), pages 163-173, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alaa Marshan & Farah Nasreen Mohamed Nizar & Athina Ioannou & Konstantina Spanaki, 2025. "Comparing Machine Learning and Deep Learning Techniques for Text Analytics: Detecting the Severity of Hate Comments Online," Information Systems Frontiers, Springer, vol. 27(2), pages 487-505, April.
    2. Jung Ryeol Park & Yituo Feng, 2023. "Trajectory tracking of changes digital divide prediction factors in the elderly through machine learning," PLOS ONE, Public Library of Science, vol. 18(2), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agrawal, Shiv Ratan & Mittal, Divya, 2022. "Optimizing customer engagement content strategy in retail and E-tail: Available on online product review videos," Journal of Retailing and Consumer Services, Elsevier, vol. 67(C).
    2. Young Bin Kim & Sang Hyeok Lee & Shin Jin Kang & Myung Jin Choi & Jung Lee & Chang Hun Kim, 2015. "Virtual World Currency Value Fluctuation Prediction System Based on User Sentiment Analysis," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-18, August.
    3. Ping-Yu Hsu & Hong-Tsuen Lei & Shih-Hsiang Huang & Teng Hao Liao & Yao-Chung Lo & Chin-Chun Lo, 2019. "Effects of sentiment on recommendations in social network," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(2), pages 253-262, June.
    4. Luis J. Callarisa-Fiol & Miguel Ángel Moliner-Tena & Rosa Rodríguez-Artola & Javier Sánchez-García, 2023. "Entrepreneurship innovation using social robots in tourism: a social listening study," Review of Managerial Science, Springer, vol. 17(8), pages 2945-2971, November.
    5. Annamalai, Balamurugan & Yoshida, Masayuki & Varshney, Sanjeev & Pathak, Atul Arun & Venugopal, Pingali, 2021. "Social media content strategy for sport clubs to drive fan engagement," Journal of Retailing and Consumer Services, Elsevier, vol. 62(C).
    6. Simon Albrecht & Bernhard Lutz & Dirk Neumann, 2020. "The behavior of blockchain ventures on Twitter as a determinant for funding success," Electronic Markets, Springer;IIM University of St. Gallen, vol. 30(2), pages 241-257, June.
    7. Yankang Su & Zbigniew J. Kabala, 2023. "Public Perception of ChatGPT and Transfer Learning for Tweets Sentiment Analysis Using Wolfram Mathematica," Data, MDPI, vol. 8(12), pages 1-27, November.
    8. Yawar Abbas & M. S. I. Malik, 2023. "Defective products identification framework using online reviews," Electronic Commerce Research, Springer, vol. 23(2), pages 899-920, June.
    9. repec:plo:pone00:0226902 is not listed on IDEAS
    10. Xiong, Xi & Li, Yuanyuan & Qiao, Shaojie & Han, Nan & Wu, Yue & Peng, Jing & Li, Binyong, 2018. "An emotional contagion model for heterogeneous social media with multiple behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 185-202.
    11. Ghasem Javadi & Mohammad Taleai, 2020. "Integration of User Generated Geo-contents and Official Data to Assess Quality of Life in Intra-national Level," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(1), pages 205-235, November.
    12. José Luis Ortega, 2022. "Classification and analysis of PubPeer comments: How a web journal club is used," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(5), pages 655-670, May.
    13. Wouter van der Schors & Marco Varkevisser, 2023. "Does Enforcement of the Cartel Prohibition in Healthcare Reflect Public and Political Attitudes Towards Competition? A Longitudinal Study From the Netherlands," Journal of Competition Law and Economics, Oxford University Press, vol. 19(2), pages 193-219.
    14. Qing Liu & Hosung Son, 2024. "Methods for aggregating investor sentiment from social media," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-22, December.
    15. Vaughan, Liwen & Yang, Rongbin, 2013. "Web traffic and organization performance measures: Relationships and data sources examined," Journal of Informetrics, Elsevier, vol. 7(3), pages 699-711.
    16. Jifeng Mu & Jonathan Zhang & Abhishek Borah & Jiayin Qi, 2022. "Creative Appeals in Firm-Generated Content and Product Performance," Information Systems Research, INFORMS, vol. 33(1), pages 18-42, March.
    17. Sandeepa Kannangara & Wayne Wobcke, 2022. "Determining political interests of issue-motivated groups on social media: joint topic models for issues, sentiment and stance," Journal of Computational Social Science, Springer, vol. 5(1), pages 811-840, May.
    18. Cheng-Jun Wang & Xinzhi Zhang & Zepeng Gou & Youqin Wu, 2024. "Yesterday once more: collective storytelling and public engagement with digital cultural products on the music streaming platform," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    19. Victoria Tur-Viñes & Araceli Castelló-Martínez, 2019. "Commenting on Top Spanish YouTubers: “No Comment”," Social Sciences, MDPI, vol. 8(10), pages 1-14, September.
    20. Miklos Sebők & Zoltán Kacsuk & Ákos Máté, 2022. "The (real) need for a human touch: testing a human–machine hybrid topic classification workflow on a New York Times corpus," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(5), pages 3621-3643, October.
    21. Christopher Ifeanyi Eke & Azah Anir Norman & Liyana Shuib, 2021. "Multi-feature fusion framework for sarcasm identification on twitter data: A machine learning based approach," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-32, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0240924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.